Semiclassical approach to Mesoscopic EDLs

Jun Huang

Institute of Energy Technologies, IET-3 Forschungszentrum Jülich & RWTH Aachen University, Germany

Motivation for a semiclassical approach

(1) Supported nanoparticle catalysts

Status quo: electronic metal-support interactions

Interfacial perimeter, chemical composition change, spillover, confinement,...

Schwab et al., Angew. Chem. de Jong et al., Nat. Catal., Aso et al., Science, Vogt, Weckhuysen. Nat. Rev. Chem.

Particle proximity effects indicate new factors on the mesoscale

Hypothesis: Overlapping EDLs are the new factors

What they look like?

How they impact reactions?

Implications for catalyst design?

Motivation for a semiclassical approach

(2) Mesoscopic EDLs with nanoscale roughness

How & why nanoscale roughness affects EDL properties?

- 1) Yoon, Y., Hall, A. S., & Surendranath, Y. Angew. Chem. (2016).
- 2) Nguyen, K. L. C., Bruce, J. P., Yoon, A., Navarro, J. J., Scholten, F., Landwehr, F., ... & Cuenya, B. R. ACS Energy Lett. (2024).

Motivation for a semiclassical approach

(3) Electrolyte effects

INFLUENCE OF CATION ADSORPTION ON THE KINETICS OF ELECTRODE PROCESSES

BY A. N. FRUMKIN * Institute of Electrochemistry of the Academy of Sciences of the U.S.S.R., Moscow, Leninsky Prospekt, 31.

Received 17th July, 1958

Strmcnik, Dusan, et al. "The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum." *Nature chemistry* 1.6 (2009): 466-472.

Relevant energy and length scales for ion effects?

* Activity difference among ions: 1~100. $j \propto \exp\left(-\frac{\Delta G_a}{k_B T}\right) \rightarrow |\Delta \Delta G_a|$: 0.01~0.15 eV

Density-potential functional theory: a semiclassical framework

- 1) Huang, J., Chen, S. and Eikerling, M., JCTC (2021);
- 2) Huang, J., *JCTC* (2023);
- 3) M.K. Zhang, Y. Chen, M. Eikerling, J. Huang, *Phys Rev Appl (In revision)*.

An orbital-free approach

$$igg| T_s[
ho] = \sum_{i=1}^N \int d{f r} \, arphi_i^st ({f r}) \left(-rac{\hbar^2}{2m}
abla^2
ight) arphi_i({f r}),$$

Kohn-Sham DFT

Exact kinetic energy
An eigenvalue problem to find orbitals

$$E[
ho] = ig| T_s[
ho] ig| + \int d{f r} \, v_{
m ext}({f r})
ho({f r}) + E_{
m H}[
ho] + E_{
m xc}[
ho],$$

ſ

Orbital-free DFT

$$T_s[\rho] = \int d\mathbf{r} \left(c_1 \rho^{5/3} + c_2 \frac{(\nabla \rho)^2}{\rho} \right)$$

Approximate kinetic energy

A partial differential equation problem to find electron density

A few comments on orbital-free DFT

- Dated back to Thomas and Fermi in 1920s, broad applications¹⁾
 - Metal surface (1960s): Kohn, Lang, Smith,...
 - Metal-solution interfaces (1980s): Badiali, Schmickler, Kornyshev, ...
 - Theory of stability of matter (1980s): Lieb (Dirac Medal, 2022), ...
 - **Computation of material properties (2000s)**: Carter, Trickey, ...
 - Hydrodynamic theory for quantum plasmonics (2010s): Manfredi, Ciracì, Dela Sala, ...
- Machine-learned orbital-free DFT is promising to catch up with Kohn-Sham DFT in terms of accuracy.²⁾

Advantages for the EDL problem

A unified **continuum field description** of electrode and electrolyte solution under constant potential

- 1) Mi, W., Luo, K., Trickey, S.B. and Pavanello, M., **Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations**. *Chem. Rev.* (2023)
- 2) Burke K., et al., J. Chem. Phys. (2013); Shao B., et al., Nat. Comput. Sci. (2024)

Orbital-free DFT of metal electrons

1	$F_{\mathbb{Q}} = T_{\text{in}}[n_{\text{e}}, \nabla n_{\text{e}}, \dots] + U_{\text{XC}}[n_{\text{e}}, \nabla n_{\text{e}}, \dots]$ Kinetic Exchange-correlation	The electrostatic potential energy of electrons and cationic cores is included in $F_{\mathbb{C}}$
	Kinetic energy functional: Thomas-Fermi-von Weizsäcker	Exchange correlation functional: Perdew-Burke-Ernzerhof
	$T_{\rm ni}[n_{\rm e}, \nabla n_{\rm e}] = \int_{\rm r} e_{\rm au} a_0^{-3} t_{\rm TF} \left(1 + \theta_{\rm T} s^2\right)$	$U_{\rm XC} = \int_{r} \left[u_{\rm X}^{0} (1 + \theta_{\rm X} s^{2}) + u_{\rm C}^{0} + (n_{\rm e} a_{0}^{3}) \theta_{\rm C} t^{2} \right]$
	$t_{\rm TF} = \frac{3}{10} (3\pi^2)^{\frac{2}{3}} (n_{\rm e}a_0^3)^{\frac{5}{3}}$ $e_{\rm au} = \frac{e_0^2}{4\pi\epsilon_0 a_0}$ $s = \frac{1}{2} (3\pi^2)^{-\frac{1}{3}} \nabla n_{\rm e} (n_{\rm e})^{-\frac{4}{3}}$	$u_{\rm X}^{0} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \left(n_{\rm e}a_{0}^{3}\right)^{\frac{4}{3}}$ $t = \frac{1}{4} \left(\frac{3}{\pi}\right)^{-\frac{1}{6}} a_{0}^{4} \nabla n_{\rm e} \left(n_{\rm e}a_{0}^{3}\right)^{-\frac{7}{6}}$ $u_{\rm C}^{0} = -2a_{1}(1 + a_{2}r_{\rm s}) \left(n_{\rm e}a_{0}^{3}\right) \ln(1/\xi + 1)$ $\xi = 2a_{1}(a_{3}r_{\rm s}^{1/2} + a_{4}r_{\rm s} + a_{5}r_{\rm s}^{3/2} + a_{6}r_{\rm s}^{2})$ $r_{\rm s} = \left(4\pi n_{\rm e}a_{0}^{3}/3\right)^{-\frac{1}{3}}$

The only free parameter is $heta_{\mathrm{T}}$

Statistical field theory of classical particles - microscopic fields and interactions

 r_{a} , r_{c} , r_{s} : positions of anions, cations, and solvent molecules; N_{a} , N_{c} , N_{s} : number of anions, cations, and solvent molecules; p: dipole moment of solvent molecule; ρ^{ex} : external charge distribution (electrons, metal cationic cores)

$$\widehat{H}[\widehat{\rho}_{c},\widehat{\rho}_{c},\widehat{\rho},\widehat{P}] = \widehat{H}_{es}[\widehat{\rho}] + \widehat{H}_{corr}[\widehat{P}] + \widehat{H}_{sr}[\widehat{\rho}_{c},\widehat{\rho}_{a},\widehat{P}]$$

$$\widehat{H}_{es}[\widehat{\rho}] = \frac{1}{2} \int_{r,r'} \widehat{\rho}(r) \frac{1}{4\pi\epsilon_{\infty}|r-r'|} \widehat{\rho}(r')$$
$$\widehat{H}_{corr}[\widehat{\boldsymbol{P}}] = \frac{1}{2\epsilon_0} \int_{r} \left(K_s \widehat{\boldsymbol{P}}^2 + K_{\alpha} \left(\nabla \cdot \widehat{\boldsymbol{P}} \right)^2 + K_{\beta} \left(\nabla^2 \widehat{\boldsymbol{P}} \right)^2 \right)$$

 $\widehat{H}_{\rm sr}[\widehat{\rho}_{\rm c},\widehat{\rho}_{\rm a},\widehat{\boldsymbol{P}}] = \alpha_{\rm c} \int_{\gamma} \widehat{\rho}_{\rm c} \nabla \cdot \widehat{\boldsymbol{P}} + \alpha_{\rm a} \int_{\gamma} \widehat{\rho}_{\rm a} \nabla \cdot \widehat{\boldsymbol{P}}$

Electrostatic interaction energy

Short-range correlation energy between solvent molecules¹

Hydration effects of ions

- 1) R. Blossey and R. Podgornik, *Phys Rev Res* (2022); *J. Phys. Math. Theo.* (2023)
- 2) M.K. Zhang, Y. Chen, M. Eikerling, J. Huang, *Phys Rev Appl (In revision).*

Grand potential functional

	$\Omega = \int_r g$, with, $g =$
Electrons	$e_{au}a_0^{-3}t_{TF}(1+\theta_T s^2) + e_{au}a_0^{-3}u_X^0(1+\theta_X s^2) + e_{au}a_0^{-3}(u_C^0 + (n_e a_0^3)\theta_C t^2)$
Classical Electrolyte species	$+\frac{1}{2}\rho(r)G(r,r')\rho(r')$ $+\frac{1}{2\epsilon_{0}}\left(K_{s}\boldsymbol{P}^{2}+K_{\alpha}(\nabla\cdot\boldsymbol{P})^{2}+K_{\beta}(\nabla^{2}\boldsymbol{P})^{2}\right)$ $-\boldsymbol{\mathcal{E}}\cdot\boldsymbol{P}-\phi\rho+\phi\rho^{ex}+n_{c}e_{0}(\phi+\alpha_{c}\nabla\cdot\boldsymbol{P})$ $-n_{a}e_{0}(\phi+\alpha_{a}\nabla\cdot\boldsymbol{P})-\frac{n_{s}}{\beta}\log\frac{\sinh(\beta p \boldsymbol{\mathcal{E}}-\nabla\phi)}{\beta p \boldsymbol{\mathcal{E}}-\nabla\phi }$
Entropy	$+\sum_{i=\mathrm{a,c,s}}\frac{1}{\beta}\left(n_i\log(n_i\Lambda_i^3)-n_i\right)+\Phi_{\mathrm{ex}}$
M-S interactions	$+\sum_{i=a,c,s}n_iw_i$
GC condition	$-\left(n_{\rm e}\tilde{\mu}_{\rm e} + \sum_{i={\rm a,c,s}} n_i\tilde{\mu}_i\right)$

Standard Model Lagrangian

 $\mathcal{L}_{\text{SM}} \;=\; -\frac{1}{2} \partial^{\nu} g^{a\mu} \partial_{\nu} g_{a\mu} - g_s f^{abc} \partial^{\mu} g^{a\nu} g^{b}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{adc} g^{b\mu} g^{c\nu} g^{d}_{\mu} g^{c}_{\nu}$

 $-\partial^{\nu}W^{+\mu}\partial_{\nu}W^{-}_{\mu} + m_{W}^{2}W^{+\mu}W^{-}_{\mu} - \frac{1}{2}\partial^{\nu}Z^{0\mu}\partial_{\nu}Z^{0}_{\mu} + \frac{m_{W}^{2}}{2c^{2}}Z^{0\mu}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial^{\nu}A^{\mu}\partial_{\nu}A_{\mu} + \frac{1}{2}\partial^{\mu}H\partial_{\mu}H - \frac{1}{2}m_{H}^{2}H^{2}$ $+\partial^{\nu}\phi^{+}\partial_{\nu}\phi^{-} - m_{W}^{2}\phi^{+}\phi^{-} + \frac{1}{2}\partial^{\nu}\phi^{0}\partial_{\nu}\phi^{0} - \frac{m_{W}^{2}}{2c^{2}}\left(\phi^{0}\right)^{2} - \beta_{H}\left[\frac{2m_{W}^{2}}{a^{2}} + \frac{2m_{W}}{a}H + \frac{1}{2}\left(H^{2} + \left(\phi^{0}\right)^{2} + 2\phi^{+}\phi^{-}\right)\right] + \frac{2m_{W}^{4}}{a^{2}}\alpha_{H}$ $-igc_{w}\left[\partial^{\nu}Z^{0\mu}\left(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-}\right)-Z^{0\nu}\left(W^{+}\mu_{\partial\nu}W_{\mu}^{-}-W^{-}\mu_{\partial\nu}W_{\mu}^{+}\right)+Z^{0\mu}\left(W^{+}\nu_{\partial\nu}W_{\mu}^{-}-W^{-}\nu_{\partial\nu}W_{\mu}^{+}\right)\right]$ $-igs_{W}\left[\partial^{\nu}A^{\mu}\left(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-}\right)-A^{\nu}\left(W^{+\mu}\partial_{\nu}W_{\mu}^{-}-W^{-\mu}\partial_{\nu}W_{\mu}^{+}\right)+A^{\mu}\left(W^{+\nu}\partial_{\nu}W_{\mu}^{-}-W^{-\nu}\partial_{\nu}W_{\mu}^{+}\right)\right]$ $-\frac{1}{2}g^2W^{+\mu}W^{-}_{\mu}W^{+\nu}W^{-}_{\nu} + \frac{1}{2}g^2W^{+\mu}W^{-\nu}W^{+}_{\mu}W^{-}_{\nu} + g^2c_w^2\left(Z^{0\mu}W^{+}_{\mu}Z^{0\nu}W^{-}_{\nu} - Z^{0\mu}Z^{0}_{\mu}W^{+\nu}W^{-}_{\nu}\right)$ $+g^{2} s_{w}^{2} \left(A^{\mu} W_{\mu}^{+} A^{\nu} W_{\nu}^{-} - A^{\mu} A_{\mu} W^{+\nu} W_{\nu}^{-}\right) + g^{2} s_{w} c_{w} \left[A^{\mu} Z^{0\nu} \left(W_{\mu}^{+} W_{\nu}^{-} + W_{\nu}^{+} W_{\mu}^{-}\right) - 2A^{\mu} Z_{\mu}^{0} W^{+\nu} W_{\nu}^{-}\right]$ $-g \alpha_{H} m_{W} \left[H^{3} + H \left(\phi^{0}\right)^{2} + 2H \phi^{+} \phi^{-}\right] - \frac{1}{2}g^{2} \alpha_{H} \left[H^{4} + \left(\phi^{0}\right)^{4} + 4 \left(\phi^{+} \phi^{-}\right)^{2} + 4 \left(\phi^{0}\right)^{2} \phi^{+} \phi^{-} + 2H^{2} \left(\phi^{0}\right)^{2} + 4H^{2} \phi^{+} \phi^{-}\right]$ $+g m_W W^{+\mu} W^{-}_{\mu} H + \frac{1}{2} g \frac{m_W}{2} Z^{0\mu} Z^{0\mu}_{\mu} H + \frac{1}{2} ig \left[W^{+\mu} \left(\phi^0 \partial_{\mu} \phi^- - \phi^- \partial_{\mu} \phi^0 \right) - W^{-\mu} \left(\phi^0 \partial_{\mu} \phi^+ - \phi^+ \partial_{\mu} \phi^0 \right) \right]$ $-\frac{1}{2}g\left[W^{+\mu}\left(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H\right)+W^{-\mu}\left(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H\right)\right]-\frac{1}{2}\frac{g}{2}Z^{0\mu}\left(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H\right)$ $+ig \frac{s_{w}^{2}}{m_{W}} m_{W} Z^{0\mu} \left(W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+} \right) - ig s_{w} m_{W} A^{\mu} \left(W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+} \right)$ $+ig\frac{s_w^2-c_w^2}{2}Z^{0\mu}\left(\phi^+\partial_\mu\phi^--\phi^-\partial_\mu\phi^+\right)-igs_wA^{\mu}\left(\phi^+\partial_\mu\phi^--\phi^-\partial_\mu\phi^+\right)$ $+\frac{1}{4}g^{2}W^{+\mu}W^{-}_{\mu}\left[H^{2}+\left(\phi^{0}\right)^{2}+2\phi^{+}\phi^{-}\right]+\frac{1}{8}\frac{g^{2}}{c^{2}}Z^{0\mu}Z^{0}_{\mu}\left[H^{2}+\left(\phi^{0}\right)^{2}+2\left(s^{2}_{w}-c^{2}_{w}\right)\phi^{+}\phi^{-}\right]$ $+\frac{1}{2}g^{2}\frac{s_{w}^{2}}{2}Z^{0\mu}\phi^{0}\left[W_{\mu}^{+}\phi^{-}+W_{\mu}^{-}\phi^{+}\right]+\frac{1}{2}ig^{2}\frac{s_{w}^{2}}{2}Z^{0\mu}H\left[W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}\right]-\frac{1}{2}g^{2}s_{w}A^{\mu}\phi^{0}\left[W_{\mu}^{+}\phi^{-}+W_{\mu}^{-}\phi^{+}\right]$ $-\frac{1}{2}ig^{2}s_{w}A^{\mu}H\left[W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}\right]+g^{2}\frac{s_{w}}{s_{w}}\left(c_{w}^{2}-s_{w}^{2}\right)A^{\mu}Z_{\mu}^{0}\phi^{+}\phi^{-}+g^{2}s_{w}^{2}A^{\mu}A_{\mu}\phi^{+}\phi^{-}$ $+\overline{e}^{\sigma}\left(i\gamma^{\mu}\partial_{\mu}-m_{e}^{\sigma}\right)e^{\sigma}+\overline{\nu}^{\sigma}i\gamma^{\mu}\partial_{\mu}\nu^{\sigma}+\overline{d}_{j}^{\sigma}\left(i\gamma^{\mu}\partial_{\mu}-m_{d}^{\sigma}\right)d_{j}^{\sigma}+\overline{u}_{j}^{\sigma}\left(i\gamma^{\mu}\partial_{\mu}-m_{u}^{\sigma}\right)u_{j}^{\sigma}$ $+g s_w A^{\mu} \left[-\left(\overline{v}^{\sigma} \gamma_{\mu} e^{\sigma}\right) - \frac{1}{2} \left(\overline{a}_j^{\sigma} \gamma_{\mu} d^{\sigma}_j\right) + \frac{2}{2} \left(\overline{u}_j^{\sigma} \gamma_{\mu} u_j^{\sigma}\right)\right] + \frac{g}{\epsilon} Z^{0\mu} \left[\left(\overline{v}^{\sigma} \gamma_{\mu} \left(1 - \gamma^5\right) v^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(4s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left(1 - \gamma^5\right)\right) e^{\sigma}\right) + \left(\overline{v}^{\sigma} \gamma_{\mu} \left(s_w^2 - \left$ $+ \left(\overline{a}_{j}^{\sigma}\gamma_{\mu}\left(\frac{4}{2}s_{w}^{2} - \left(1 - \gamma^{5}\right)\right)a_{j}^{\sigma}\right) + \left(\overline{a}_{j}^{\sigma}\gamma_{\mu}\left(-\frac{8}{2}s_{w}^{2} + \left(1 - \gamma^{5}\right)\right)a_{j}^{\sigma}\right)\right]$ $+\frac{g}{2\sqrt{\sigma}}W^{+\mu}\left[\left(\overline{\nu}^{\sigma}\gamma_{\mu}\left(1-\gamma^{5}\right)P^{\sigma\tau}e^{\tau}\right)+\left(\overline{u}_{j}^{\sigma}\gamma_{\mu}\left(1-\gamma^{5}\right)C^{\sigma\tau}d_{j}^{\tau}\right)\right]$ $+\frac{g}{2\sqrt{\sigma}}W^{-\mu}\left[\left(\overline{e}^{\sigma}\gamma_{\mu}\left(1-\gamma^{5}\right)P^{\dagger\sigma\tau}\nu^{\tau}\right)+\left(\overline{a}_{j}^{\sigma}\gamma_{\mu}\left(1-\gamma^{5}\right)C^{\dagger\sigma\tau}u_{j}^{\tau}\right)\right]$ $+i\frac{g}{2\sqrt{2}}\frac{m_e^{\sigma}}{m_{ev}}\left[-\phi^+\left(\overline{\nu}^{\sigma}\left(1+\gamma^5\right)e^{\sigma}\right)+\phi^-\left(\overline{e}^{\sigma}\left(1-\gamma^5\right)\nu^{\sigma}\right)\right]-\frac{g}{2}\frac{m_e^{\sigma}}{m_{ev}}\left[H\overline{e}^{\sigma}e^{\sigma}-i\phi^0\overline{e}^{\sigma}\gamma^5e^{\sigma}\right]$ $+i\frac{g}{2\sqrt{2}m_{\cdots}}\phi^{+}\left[-m_{d}^{\tau}\left(\overline{u}_{j}^{\sigma}C^{\sigma\tau}\left(1+\gamma^{5}\right)d_{j}^{\tau}\right)+m_{u}^{\tau}\left(\overline{u}_{j}^{\sigma}C^{\sigma\tau}\left(1-\gamma^{5}\right)d_{j}^{\tau}\right)\right]$ $+i\frac{g}{2\sqrt{2}m_{uv}}\phi^{-}\left[m_{d}^{\tau}\left(\overline{d}_{j}^{\sigma}C^{\dagger\sigma\tau}\left(1-\gamma^{5}\right)u_{j}^{\tau}\right)-m_{u}^{\tau}\left(\overline{d}_{j}^{\sigma}C^{\dagger\sigma\tau}\left(1+\gamma^{5}\right)u_{j}^{\tau}\right)\right]$ $-\frac{g}{2}\frac{m_w^\sigma}{m_W}H\overline{u}_j^\sigma u_j^\sigma - \frac{g}{2}\frac{m_d^\sigma}{m_W}H\overline{d}_j^\sigma d_j^\sigma - i\frac{g}{2}\frac{m_w^\sigma}{m_W}\phi^0\overline{u}_j^\sigma\gamma^5 u_j^\sigma + i\frac{g}{2}\frac{m_d^\sigma}{m_W}\phi^0\overline{d}_j^\sigma\gamma^5 d_j^\sigma$ $-\frac{1}{2}i g_{s}\overline{d}_{i}^{\sigma}\gamma^{\mu}\lambda_{ij}^{a}d_{j}^{\sigma}g_{\mu}^{a}-\frac{1}{2}i g_{s}\overline{u}_{i}^{\sigma}\gamma^{\mu}\lambda_{ij}^{a}u_{j}^{\sigma}g_{\mu}^{a}$ $-\overline{X}^{+}\left(\partial^{\mu}\partial_{\mu}+m_{W}^{2}\right)X^{+}-\overline{X}^{-}\left(\partial^{\mu}\partial_{\mu}+m_{W}^{2}\right)X^{-}-\overline{X}^{0}\left(\partial^{\mu}\partial_{\mu}+\frac{m_{W}^{2}}{c^{2}}\right)X^{-}-\overline{Y}\partial^{\mu}\partial_{\mu}Y$ $-igc_wW^{+\mu}\left(\partial_\mu\overline{X}^0X^- - \partial_\mu\overline{X}^+X^0\right) - igs_wW^{+\mu}\left(\partial_\mu\overline{Y}X^- - \partial_\mu\overline{X}^+Y\right)$ $-igc_wW^{-\mu}\left(\partial_\mu \overline{X}^- X^0 - \partial_\mu \overline{X}^0 X^+\right) - igs_wW^{-\mu}\left(\partial_\mu \overline{X}^- Y - \partial_\mu \overline{Y} X^+\right)$ $-i g c_w Z^{0\mu} \left(\partial_\mu \overline{X}^+ X^+ - \partial_\mu \overline{X}^- X^- \right) - i g s_w A^\mu \left(\partial_\mu \overline{X}^+ X^+ - \partial_\mu \overline{X}^- X^- \right)$ $-\frac{1}{2}gm_W \left[\overline{X}^+ X^+ H + \overline{X}^- X^- H + \frac{1}{2} \overline{X}^0 X^0 H \right]$ $+\frac{s_{w}^{2}-c_{w}^{2}}{2}igm_{W}\left[\overline{X}^{+}X^{0}\phi^{+}-\overline{X}^{-}X^{0}\phi^{-}\right]+\frac{1}{2c}igm_{W}\left[\overline{X}^{0}X^{-}\phi^{+}-\overline{X}^{0}X^{+}\phi^{-}\right]$ $+ig m_W s_W \left[\overline{X}^- Y \phi^- - \overline{X}^+ Y \phi^+\right] + i \frac{1}{2}g m_W \left[\overline{X}^+ X^+ \phi^0 - \overline{X}^- X^- \phi^0\right]$ $-\overline{G}^{a}\partial^{\mu}\partial_{\mu}G^{a} - g_{s}f^{abc}\partial^{\mu}\overline{G}^{a}G^{b}g^{c}_{\mu}$

Controlling equations of three fields

Euler-Lagrange equation

$$\frac{\delta\Omega}{\delta X} = 0 \ (X = \rho, \phi, \mathcal{E}, \mathcal{P}, n_{\rm e}, n_{\rm c}, n_{\rm a}, n_{\rm s})$$

$$X = n_{e} \qquad \overline{\nabla}\overline{\nabla}\overline{n}_{e} = \frac{20}{3} \overline{n}_{e} \frac{\omega}{(\theta_{T}\omega - \theta_{XC})} \left(\frac{\partial t_{TF}}{\partial \overline{n}_{e}} + \frac{\partial u_{X}^{0}}{\partial \overline{n}_{e}} + \frac{\partial u_{C}^{0}}{\partial \overline{n}_{e}} - \frac{(\widetilde{\mu}_{e} + e_{0}\phi)}{e_{au}} \right) + \frac{\left(\theta_{T}\omega - \frac{4}{3}\theta_{XC}\right)}{2\overline{n}_{e}(\theta_{T}\omega - \theta_{XC})} (\overline{\nabla}\overline{n}_{e})^{2} \qquad \begin{array}{c} \text{Electron} \\ \text{density} \end{array}$$

$$X = \rho \qquad \phi = \int_{r'} G(r, r')\rho(r') = \int_{r'} \frac{\rho(r')}{4\pi\epsilon_{\infty}|r - r'|} \qquad \text{Definition of electric potential} \end{array}$$

$$X = \mathcal{E} \qquad P = -\frac{pn_{s}\mathcal{L}(\beta p|\mathcal{E} - \nabla\phi|)}{|\mathcal{E} - \nabla\phi|} (\mathcal{E} - \nabla\phi) \qquad \qquad \begin{array}{c} \text{Modified Langevin} \\ \text{polarization equation} \end{array}$$

$$X = \phi \qquad \nabla \cdot (\epsilon_{\infty} \nabla\phi + P) = -(n_{c} - n_{a})e_{0} - (n_{cc} - n_{e})e_{0} \qquad \qquad \begin{array}{c} \text{Modified Poisson-Boltzmann equation} \\ \text{Boltzmann equation} \end{array}$$

Densities of classical particles

Euler-Lagrange equation

$$X = n_{\rm c}, n_{\rm a}, n_{\rm s}$$

Electrochemcial potential of electrolyte component

$$\frac{\Omega}{X} = 0 \ (X = \rho, \phi, \mathcal{E}, \boldsymbol{P}, n_{\rm e}, n_{\rm c}, n_{\rm a}, n_{\rm s})$$

$$\begin{split} \widetilde{\mu}_{c} &= \frac{1}{\beta} \log \frac{n_{c} \Lambda_{c}^{3}}{1 - \sum_{i} n_{i} \gamma_{i} \Lambda_{B}^{3}} + e_{0} (\phi + \alpha_{c} \nabla \cdot \boldsymbol{P}) + w_{c} \\ \widetilde{\mu}_{a} &= \frac{1}{\beta} \log \frac{n_{a} \Lambda_{a}^{3}}{1 - \sum_{i} n_{i} \gamma_{i} \Lambda_{B}^{3}} - e_{0} (\phi + \alpha_{a} \nabla \cdot \boldsymbol{P}) + w_{a} \end{split}$$
Solvation effects
$$\widetilde{\mu}_{s} &= \frac{1}{\beta} \log \frac{n_{s} \Lambda_{s}^{3}}{1 - \sum_{i} n_{i} \gamma_{i} \Lambda_{B}^{3}} - \frac{1}{\beta} \log \frac{\sinh(\beta p |\boldsymbol{\mathcal{E}} - \nabla \phi|)}{\beta p |\boldsymbol{\mathcal{E}} - \nabla \phi|} + w_{s} \end{split}$$

Spatial distribution of electrolyte component i

$$n_i = n_{\max} \frac{\chi_i \Theta_i}{\chi_v + \sum_i \gamma_i \chi_i \Theta_i}$$

 $\chi_i = n_i^{\rm b}/n_{\rm max}$, $\chi_{\rm v} = n_{\rm v}^{\rm b}/n_{\rm max}$, $n_{\rm v}^{b}$ the number density of vacancies in bulk

with the thermodynamic factors

$$\begin{split} \Theta_{\rm c} &= \exp(-\beta e_0(\phi + \alpha_{\rm c} \nabla \cdot \boldsymbol{P}) - \beta w_{\rm c}), \\ \Theta_{\rm a} &= \exp(\beta e_0(\phi + \alpha_{\rm a} \nabla \cdot \boldsymbol{P}) - \beta w_{\rm a}) \\ \Theta_{\rm s} &= \frac{\sinh(\beta p |\boldsymbol{\mathcal{E}} - \nabla \phi|)}{\beta p |\boldsymbol{\mathcal{E}} - \nabla \phi|} \exp(-\beta w_{\rm s}) \end{split}$$

16

Relation to other formalisms

Full DPFT

1) M.K. Zhang, Y. Chen, M. Eikerling, J. Huang, *Phys Rev Appl (In revision)*.

Numerical implementation to a 1D problem (1) Controlling equations

Dimensionless quantities

$$\bar{n}_i = a_0^3 n_i, \bar{x} = \frac{x}{a_0}, \bar{\phi} = \frac{e_0 \phi}{k_B T}, \bar{p} = \frac{p}{e_0 a_0}, \bar{\epsilon}_\infty = \frac{\epsilon_\infty}{\epsilon_0}, \bar{P} = \frac{\kappa a_0^2 P}{e_0}, \bar{\mathcal{E}} = \frac{e_0 a_0 \bar{\mathcal{E}}}{k_B T}, \bar{K}_\alpha = \frac{K_\alpha}{a_0^2}, \bar{K}_\beta = \frac{K_\beta}{a_0^4}, \bar{\alpha}_i = \frac{\epsilon_0 \alpha_i}{a_0^2}, \bar{\beta}_i = \beta_i a_0$$

Dimensionless differential equations

$$\overline{\nabla}\overline{\nabla}\overline{n}_{e} = \frac{20}{3}\overline{n}_{e}\frac{\omega}{(\theta_{T}\omega - \theta_{XC})} \left(\frac{\partial t_{TF}}{\partial\overline{n}_{e}} + \frac{\partial u_{X}^{0}}{\partial\overline{n}_{e}} + \frac{\partial u_{C}^{0}}{\partial\overline{n}_{e}} - \frac{(\tilde{\mu}_{e} + e_{0}\phi)}{e_{au}}\right) + \frac{\left(\theta_{T}\omega - \frac{4}{3}\theta_{XC}\right)}{2\overline{n}_{e}(\theta_{T}\omega - \theta_{XC})} \left(\overline{\nabla}\overline{n}_{e}\right)^{2}$$
$$\overline{\nabla}\left(\overline{\epsilon}_{\infty}\overline{\nabla}\overline{\phi} + \overline{P}\right) = -\kappa(\overline{n}_{cc} - \overline{n}_{e} + \overline{n}_{c} - \overline{n}_{a})$$

 $K_{\rm s}\bar{P}-\bar{K}_{\alpha}\bar{Q}+\bar{K}_{\beta}\overline{\nabla}^{2}\bar{Q}-\kappa\bar{\alpha}_{\rm c}\overline{\nabla}\bar{n}_{\rm c}+\kappa\bar{\alpha}_{\rm a}\overline{\nabla}\bar{n}_{\rm a}=\bar{\mathcal{E}}$

 $\overline{\nabla}^2 \overline{P} = \overline{Q} \qquad \text{introduced to reduce the order of ODE}$ $\overline{P} = -\frac{\kappa \overline{p} \overline{n}_{\text{s}} \mathcal{L}(\overline{p} | \overline{\mathcal{E}} - \overline{\nabla} \overline{\phi} |)}{|\overline{\mathcal{E}} - \overline{\nabla} \overline{\phi}|} (\overline{\mathcal{E}} - \overline{\nabla} \overline{\phi})$

Implemented in COMSOL Multiphysics using the Mathematical Equation Interface, details provided in the SI M.K. Zhang, Y. Chen, M. Eikerling, J. Huang, *In preparation*.

Numerical implementation to a 1D problem (2) Boundary conditions

Left BCs in the metal bulk

 $\nabla n_e = 0, \nabla \phi = 0, \mathbf{P} = 0, \nabla^2 \mathbf{P} = 0$

Right BCs in the solution bulk

$$n_e = 0, \phi = 0, \boldsymbol{P} = 0, \nabla^2 \boldsymbol{P} = 0$$

Description of metal cationic cores

- Jellium: $\frac{\bar{n}_{cc}}{\bar{n}_{cc}^0} = \theta(\bar{x}_M \bar{x}), \theta$ is a Heaviside function
- Atomic structure: $\frac{\bar{n}_{cc}(x)}{\bar{n}_{cc}^{0}} = \theta(x) \theta\left(x \frac{a_{cc}}{2}\right) + \theta\left(x \frac{a_{cc}}{2} t\right) \theta\left(x \frac{3a_{cc}}{2} t\right) + \theta\left(x \frac{3a_{cc}}{2} 2t\right) \theta\left(x \frac{5a_{cc}}{2} t\right) + \theta\left(x \frac{5a_{cc}}{2} 3t\right) \theta\left(x \frac{7a_{cc}}{2} 3t\right) + \theta\left(x \frac{7a_{cc}}{2} 4t\right) \theta\left(x \frac{9a_{cc}}{2} 4t\right)$

EDL of Ag(110)-0.1 M KPF₆ aqueous interface

Oscillation in model results at five electrode potentials referenced to the PZC

20

EDL of Ag(110)-0.1 M KPF₆ aqueous interface

Layering in model results at five electrode potentials referenced to the PZC

EDL of Ag(110)-0.1 M KPF₆ aqueous interface

Benchmark with experimental C_{dl} data – concentration dependence

Fitted parameters

- **OF-DFT parameter**: $\theta_{\rm T} = 1.663$
- Electrolyte solution parameters: $\bar{K}_{\alpha} = -0.35$, $\bar{K}_{\beta} = 0.145$, $\bar{\alpha}_{c} = -0.05$, $\bar{\alpha}_{a} = -0.081$
- Effective equilibrium distance^{*} and coefficients in the Morse potential): $d_s^M = 6.6 a_0, d_c^M = 13.3 a_0, d_a^M = 11.6 a_0, \bar{\beta}_s = 0.95, \bar{\beta}_c = 0.19, \bar{\beta}_a = 4.5$

* M-S interactions are described by the repulsive part of Morse potential: $w_i = D_i \exp(-2\beta_i(d-d_i)) = \beta^{-1} \exp(-2\beta_i(d-d_i^M))$ with effective equilibrium distance $d_i^M = d_i + \frac{\ln(\beta D_i)}{2\beta_i}$.

EDL of Ag(hkl)-0.1 M KPF₆ aqueous interface

Benchmark with experimental C_{dl} data – Facet dependence

 $\theta_{\rm T}$ is 1.663 for Ag(110), 1.777 for Ag(100)

EDL of Ag(hkl)-0.1 M KPF₆ aqueous interface

Benchmark with experimental C_{dl} data – Electrolyte dependence

lon parameters	r _i /Å	$ar{lpha}_i$	d_i^{M}/a_0	$ar{eta}_i$
Solvated K ⁺	3.60	-0.050	13.3	0.19
Solvated Na ⁺	3.25	-0.022	13.3	0.15
Bare PF_6^-	2.70	-0.081	11.6	4.50
Bare ClO_4^-	2.75	-0.040	09.4	1.00

Hypothesis: Overlapping EDLs are the new factors

Electronic equilibration and outer surface charging

1 nm radius Ag NP on Au support, (a) in vacuum and (b) in solution. Net electronic charge density: $\rho_e = e_0(n_{cc} - n_e)$ Electronic charge density <u>difference</u>: $\Delta \rho_e = \rho_e^{sc} - \rho_e^c - \rho_e^s$ Net ionic charge density: $\rho_{ion} = e_0(n_c - n_a)$

- Outer surface charging is more pronounced in solution environment than in vacuum.
- Outer surface charging causes ionic charge separation in solution phase.

Y. Zhang, T. Binninger, J. Huang, M. Eikerling., *Phys Rev Lett, Accepted*

Comparison with DFT results

Quantitative agreement between DFT and DPFT

Effect of NP coverage on global Φ and global PZC

Differential capacitance: Cd

$$C_{d,ave} = C_{d,Ag} \frac{S_{Ag}}{S_{Ag} + S_{Au}} + C_{d,Au} \frac{S_{Au}}{S_{Ag} + S_{Au}}$$

Au sup.

Ag NP

- sup. NP
- Cd of heterogeneous surface resembles that of homogeneous surface: the only one minimum corresponds to the global potential of zero charge.
- Electron redistribution tends to homogenize the capacitive response of the heterogeneous surface.

Differential capacitance: Cd Coverage effect

At lower and upper coverage limit, C_{dl} of supported NP approaches the bare support and unsupported NP, respectively.

Summary

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Helmholtz Young Investigators Award

Key collaborators: M. Eikerling (Jülich), M. Melander (Jyväskylä), J. Feliu & V. Climent (Alicante), Y. Tong (Duisburg-Essen), Y. Chen (Hefei)