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W Section

Cotrse Phiiosophy



© Building a PW-DFT code [ 1/ Course Philosophy

Building a PW-DFT code from scratch is an ambitious though feasible goal.
Limitations to ensure feasibility

» Only I'-point

» Cubic unit cell

» No pseudopotentials
> Restricted (no spin-polarization)

vy

» Focusing on the ingredients (so that you can cook at home)

v

Leaning by doing (exercises + workouts)
Fully working educational code (PyPWDFT) to dissect

v
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W Section

Recap



© The Schrédinger equation

We start with the (in)famous time-independent non-relativistic Schrédinger equation

Hy = E

where the Hamiltonian operator A is given (in atomic units) by
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© Born-Oppenheimer approximation

Nuclei are much heavier than electrons, hence we consider the motion of the electrons
to occur under the static presence of the nuclei.

M M
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by which the result is termed the [EE&iGnile] Hamiltonian

N N M 74
v 1, 1
Hoeo == 5Vi=D D =+ Z
i=1 i=1 A=1 =1 ]>z
Note that the nucleus-nucleus repulsion is still used, but only as a static term to the total

electronic energy.
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© Wave function

We have a system of multiple electrons, so we need a wave function that can handle
that. A naive implementation is to simply consider a product of one-electron wave
functions

YHartree = Xi (il) Xj (§2) XN (iN)

which is called a Hartree product. Assuming that the spinorbitals form an orthonormal
set

(xi (X1) [x; (X1)) = 65

then

~

Helec VHartree = (61 +e+---+ 6N) WHartree
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© Problem with the Hartree product N2/ Recap

The chance to find any of the electrons is given by
W (K1, Rz, -+, )P dRadRy - ARy = |y (R1)|” dRa [y (R2)* Rz - [y ()| dRy

For each of the electrons, that chance does not depend on the position of the other
electrons. In other words, electron motion is fundamentally uncorrelated in this wave
T led Ml That cannot be right!
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© Problem with the Hartree product N2/ Recap

In reality, electrons will repel each other and thus the chance to find electron 1 at
position X; depends on the position of, e.g., electron 2 at position X.

But there is an even more fundamental problem. The Hartree product allows us to

distinguish between individual electrons. Electrons are fundamentally
TGSAEEI Y particles and hence the many-electron wave function should have

this property embedded.

& Ivo Filot / i.a.w.filot@tue.nl \
M) Han-sur-Lesse Winterschool 2024 \/7 IM/jB TU/e 10

@ Plane Wave Density Functional Theory from Scratch WII'IIETSBhl][]Hnr



© Slater determinant [N 2/Recap

Remember, the X are the electrons and the x; are the spin-orbitals.

1) x(E) o (X

Xi(;?N) Xj(;zN) Xk(.i)N)
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© Slater determinant [N 2/Recap

» Satisfies anti-symmetry principle

» Electrons become (exchange-)correlated
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© Slater determinant

Xi ({‘:1) Xj (%1) Xk (>:<:1)
0 (%1, Ry ) = (v | VR B G)
Xi (X)X (-iN) Xk (XN)

Important

This is still an [eeli=Eiel wave function because electrons with opposite spin remain
uncorrelated.
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© Combining Slater Determinant and Hamiltonian (1)

Inserting a Slater determinant

Xi (5?1) X3 (551) Xk (551)
|\If ()_(, )_(, % )> (N')_1/2 Xl (Xz) XJ (XQ) Xk (XQ)
1, X2, AN .
xi (Xn)  xj (Xn) Xk (XN)
into
R N 1 N M 7 N N 1
R L D ST 9 I
i=1 im1a—1 A o g>i Tij
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© Combining Slater Determinant and Hamiltonian (2)

N

= (W) =Y (ul - 5 V) + Z xAZ 2

i 2,a

kinetic energy nuclear attraction

DN | =

N N
SO bl |X1X]> <X1XJ| |X.7Xl>
J

i

coulomb repulsion exchange
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© Using the electron density

Hartree-Fock is a wave function based method, can we switch to only using the
electron density and are there advantages to that?
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© External potential and v-representability

The electrons are under the influence of an external potential due to the nuclei

Z Z;
Vext (7_'0) = — m .
— 1y

7

In combination with the number of electrons, this determines all the ground state
properties (up to an arbitrary constant) of the system.
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© Proof W 2/Recap

Suppose there are two different external potentials that yield the same electron density.
These would have different Hamiltonians and thus a different ground state wave
function. From the variational principle we can then state

E1 < <‘I’2’7:[1|\If2> = <\P2‘7:[2|\I’2> + <\I/2’7:[1 — 7:[2“1/2>
— B+ / 7 Vert. (7) — Vet ()] dF

And by swapping E7 and E5 we would then find the contradiction

FEi1+ Es < By + Fy.
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© Defining total energy [ 2/Recap

Suppose we have a system of M nuclei and N electrons, then its energy as function of
the electron density p is given by

Bl =T+ V] +  Ule()]

kinetic nuclear attraction electron electron

— [ a7+ Fuals
where Fyk[p] is a so-called universal functional

Fuklp] = T[p] + Ulpl,

° . . .
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© Variational principle [2/Recap

To find the ground state electron density po(7), we are tasked by looking for that po(7)
that minimizes E, [p].

Ey[p] = T[p(r)] + Vp()] + Ulp(7)]

This procedure is however hindered by having no explicit expressions for T'[p(7)] and the
non-classical part of Ul[p(7)].
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© Kohn-Sham method N 2/Recap

Instead of solving for a system of interacting electrons, we use a fictitious proxy
system of non-interacting electrons with the same density as the interacting system.
For that system, the Hamiltonian is very simple

A N 1 N

Application of a Slater determinant on this Hamiltonian would yield

A 1
hsxi = (—§V + Vs(F)) Xi = €iXi

& Ivo Filot / i.a.w.filot@tue.nl VA
M) Han-sur-Lesse Winterschool 2024 \\/} IM@B TU/e 21

@ Plane Wave Density Functional Theory from Scratch WII'"ETSBH




© Kinetic energy and electron density

Because the electrons are (assumed) to be non-interacting, the expressions for the
kinetic energy and the total electron density become very simple

N 1,
Tilp] = Z (xil = §V |X)

7

p(F) = [xa(7) .
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© The big term-shuffle [2/Recap

A non-interacting system is of course not equal to an interacting system, and this
discrepancy has to be fixed. The trick to solve this is to transfer the interacting part of
T'[p] to a so-called exchange-correlation functional as defined by

EMME@M—EMH—%M%>{@

classical e-e

by which the universal function F[p] becomes

Flp] = Ts[p] + J[p] + Exc[p]-

° . . X
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© Kohn-Sham energy expression [N 2/Recap

DFT:
Elpl = Tlpl + [ olp(r) di'+ Jlp] + Bl

Z/X;" (—%V?) Xi dif

+ [0 ) dr 4 Tlp] + Bl

HF:

N

\I/|/H|\Ij Z X1| - _V2|Xz + Z le Z 2 |X1

ii[)@xa —haxi) = axsl— Ixmﬁ

%

+

DO =
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© Summary

Kohn-Sham method: one-electron orbitals

~

1
hsxi = <—§V + Vs(F)) Xi = €)X
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W Section

Plane waves



© Unitcell: home of the plane waves

W 3/Plane waves
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M= |a3

Volume:

Q =det |M| = dj - (@3 x a3)
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© Planewaves & Reciprocal grid [N 3/Plane waves

Plane wave:
o(G,7) = exp (zé . F)
\/_
Plane wave vectors: Reciprocal matrix vectors: Reciprocal matrix:
- N\ - . o .
Gl igjis = ( i1 — 7) 1+ by = op 22 298 bj L
2 B=|by|=2r(MT)"
Ny - az X ay -
(22 - 7) bo+ by =27 19) b3
- 11 X a3
N3\ - by = 27—
(Z3 - 7) 3 3 0
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W 3/Plane waves

© Plane waves are normalized

(d(G,M|¢(G, 7)) = /dr exp( iG F)GXp(—i—z’@-F)
=—/dr1—%:

» Complex-conjugate is taken for the ket
» Results in “cancellation” of exponential term

> Effectively integration over unit cell volume

@ . o . _
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W 3/Plane waves

© Orthonormal basis set

> (G — GI) - ¥ always corresponds to a multiple of 27
» exp(i-2m-n) =0 for n € Zyg (recall the unit circle)
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© Representation using basis set W 3/Plane waves

Any function inside the unitcell M that admits to
u(F) = u(7+ R)

can be represented by a linear combination of plane waves

(i) = % %:a(é) exp (iGF - 7)
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© Finding ﬂ(é) W 3/Plane waves

Given
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© Basis set truncation [ 3/ Plane waves

The equality
1 - -
u(r) = 7 Zﬂ(G) exp (iG . F)
a

is only true for an infinitely large set of plane waves. Typically we use a number of
plane waves smaller than oo by defining a cut-off energy such that

< Ecut .

o

N | =

For sufficiently large sets, the top equation remains approximately true (tunable to
within proper numerical approximation).
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© Finding {ﬁ(é)} W 3/Plane waves

> Finding the plane wave expansion coefficients {@(G)} can be done via numerical
integration on a per-plane wave basis. This is however very inefficient.

» Finding m plane wave expansion coefficients {a(G)} IR exploits

certain overlap in operations.

Method: Fast Fourier Transforms

Superfast and trivially parallellizable algorithm for obtaining plane waves
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© Fast Fourier Transform algorithm [ 3/Plane waves

Implementation of Fast Fourier Transform (FFT) differs between software packages.

ANEVE e R eTaTEnI=onIE  Most packages define the inverse DFT, in one
dimension, via

Or in three dimensions, using our notation, as

Qgyz = m z@; d(é) exp (z(j (z,y, Z)T)
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© Example: FFT in 1D W 3/Plane waves

1 3
y = sin (27r- ix) + 2sin (27 - ) + 4sin (27r . 53})

57 100
75
01 50
251
_5.
T T T T T T T 0- T T T T T T T
0 2 4 6 8 10 12 -2.0 -1.5 -1.0 =0.5 0.0 0.5 1.0 1.5 2.0

(left) Original signal; (right) FFT
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© Fast Fourier Transform algorithm in 3D [ 3/Plane waves

The typical implementation
1 ~ — . —
Qgyz = m ZG(G) exp (ZG (v, Z>T)
G

differs from our definition

u(7) = LQ z@:a(é) exp (zé : F)
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© Fast Fourier Transform: Details W 3/Plane waves

» The FFT algorithm is about our unit cell. It simply takes a a bunch of
numbers (3D-array) and spits out the corresponding expansion coefficients.

» Resulting coefficients need to be to comply with out definition

L @l Reciprocal space vectors @ need to be established to use the plane-wave basis in
urther calculations.
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© Fast Fourier Transform: Procedure [N 3/Plane waves

Points

1. Sample unit cell using equidistant

sampling points G-vectors

2. Reformat as ordered 3D array
(z>y>x)
3. Insert into FFT algorithm

1. Calculate G-vectors per dimension
2. Consolidate into 3D vector field

.. Nz NyN.
4. Correct coefficients by factor —2-4—=
Va
° . . .
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© Example Transformation

© 0 N O U A WN R

HoR R e
w N K O

14
15
16
17
18
19
20

import numpy as np

npts = 64 # number of data points per cartesian direction
sz =10 # size of the cubic unit cell

c = np.linspace(0, sz, npts, endpoint=False)
z, y, x = np.meshgrid(c, ¢, ¢, indexing='ij")

r = np.zeros((npts,npts,npts,3))
ri:,:,:,0] =x
rl:,:,:,11 =y
rl:,:,:,2] =z

# build Gaussian

r -= (5,5,5) # put Gaussian at the center
r2 = np.einsum(’ijkl,ijkl->ijk’, r, r)
psi = (2.0 / np.pi)**(3/4) * np.exp(-r2)

ct = np.sqrt(sz**3) / npts*x*3
psi_fft = np.fft.fftn(psi) * ct

Han-sur-Lesse Winterschool 2024
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© Example Calculating Reciprocal space vectors [N 3/ Plane waves

1 def build_fft_vectors(sz, npts):

2 # calculate plane wave vector coefficients in one dimension
3 k = np.fft.fftfreq(npts) * 2.0 * np.pi * (npts / sz)
4

5 # construct plane wave vectors

6 k3, k2, k1 = np.meshgrid(k, k, k, indexing='ij")

7

8 kvec = np.zeros((npts,npts,npts,3))

9 kvec[:,:,:,0] = k1l

10 kvec[:,:,:,1] = k2

11 kvec[:,:,:,2] = k3

12

13 k2 = np.einsum(’ijkl,ijkl->ijk’, kvec, kvec)

14

15 return kvec, k2
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© Tips for success (or at least preventing frustration) [N 3/ Plane waves

A Important

» From the perspective of your computer, the arrays are just chunks of number.
They carry no metadata; only you can interpret them.

» The scalar fields and vectors fields are . Do not change their order nor
their shape.
» Stick to the “protocol” when building and working with these numerical objects.
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© Using plane waves: calculation of properties [N 3/ Plane waves

Given a wave function 1) as expanded using the plane-wave basis set (PWBS):
1 - .
= —= > (@ exp (iG-7)
W = o5 D v(Gexp
€
We can easily evaluate the kinetic energy via

1 - .
Fian = 5 Y 10(G) - |G
G
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© Derivation kinetic energy W 3/Plane waves

Provided

the kinetic energy can be easily derived to correspond to

Fian = <¢<f‘) w<f')>
5 ZZw G1)|GP? (6(G|6(G))
—ZZw Ui(ehltelreres

5 Z (AP |G
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© Notation [ 3/Plane waves

From here on, we introduce the following notation for the FFT according to prevalent
in numerical implementations

(G) = F[(7)
and according to a conventional plane-wave basis set via

VG = Fouw [(7)]

There also exist the inverse transforms, indicated by “~1”,

@) = F 1 [9(3)]

e.g.
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W Section

Patentials



© Three important potentials X 4/ Potentials

» Nucleus-electron (external potential)
» Electron-electron (Hartree potential; Classical electron-electron interactions)
» Exchange-correlation (Non-classical electron-electron interactions)

There are also nuclear-nuclear interactions, which we will treat in the next section.
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© Poisson equation [N 4/ Potentials

An easy way to solve for a classical electrostatic potential, either electron-electron or
nucleus-electron is via solving FEEIESelM S e[ IEE o1 .
V2p(7) = —dmp(7)

p acts as the [SIEFESGENEA | either electron density of nuclear point charges.
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© Plane-wave expansion of a charge density R 4/ Potentials

Suppose that
1 - -
T) = — o(G) ex (iG-F).
p(7) = 7= 2 p(G)exp
G
the Poisson equation can be easily solved, yielding

4m ﬁ(G) =R
“) R G-7r).
(T 7 : aP exp (z )
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© Divergent term [ 4/ Potentials

The term corresponding to G = 0 diverges, so we remove this term.

47 5(G) e
o) VQ — |G)? P <Z T)
G40

This term correspond to the average charge in the unit cell. For a neutral system, this
term should be zero. More specifically, all the divergent terms for electrostatic
interactions (e-e, e-n and n-n) should cancel out.
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© Hartree potential [N 4/ Potentials

Given an electron density, p(7) we can thus easily construct the Hartree potential via
consecutive forward and backward FFTs

() = F! ﬂ%m [p(m]

G0

A Note

Observe the “+" sign in the above equation because p corresponding to the electron
density is negative charge.
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© Hartree potential: Python code

W 4/ Potentials

# construct charge density
rho = np.power(psi,2)
fft_rho = np.fft.fftn(rho)

kvec, k2 = build_fft_vectors(sz, npts)

# build the Hartree potential in reciprocal space

1
2
3
4
5 # build fft vectors
6
7
8
9 with np.errstate(divide="ignore’, invalid='ignore’):

10 fft_hartree = 4.0 * np.pi * fft_rho / k2
11 fft_hartree[~np.isfinite(fft_hartree)] = 0.0
12

13 # perform inverse FFT
14 hartree = np.fft.ifftn(fft_hartree)
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© Nuclear attraction [ 4/ Potentials

For the nuclear attraction, the charge field are simply point charges
pnuclu Z QJ F

and thus the Fourier transform has a nice analytical solution
(6(C, P u(P) = /drzexp (iG-7) 57— Ry

= % exp (z@ . R})
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© External potential [N 4/ Potentials

And we only need a backward transform for the nuclear potential

4 - .
Vext = —\/—%FP_WI 2 |G|_2 Zj:exp (z’G . Rj)

G#0

Mind the exclusion of the divergent term!
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© External potential: Python code for single Z = 1 nucleus

W 4/ Potentials

1 def build_external_potential(npts, sz):

. W

3 Calculate the external potential by single nucleus with charge Z=1
n W

5 # build fft vectors

6 kvec, k2 = build_fft_vectors(sz, npts)

7 R = (sz/2, sz/2, sz/2)

8

9 # generate structure factor and nuclear attraction field
10 st = np.exp(-1j * kvec @ R) / np.sqrt(sz*x3)

11 ct = np.sqrt(sz*x*3) / nptsx*x*3

12 with np.errstate(divide="ignore’, invalid='ignore’):

13 nupotg = -4.0 * np.pi / k2

14 nupotg[0,0,0] = 0

15

16 vnuc = np.fft.ifftn(sf * nupotg) / ct

17

18 return vnuc
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© Exchange-correlation functi R 4/ Potentials

» Treats non-classical electron-electron interaction
> Best evaluated in real-space

> Fixed recipes available; outside the scope of this lecture
» Most simple type is SVWN5 (LDA)
> Slater exchange (S)

» Correlation by Padé-approximant of Vosko, Wilk and Nusair, equation 5 of their
paper (VWN5)

» Great numerical libraries readily available (1ibXC)
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W Section

Ewald summation



© Interatomic potential [ 5/Ewald summation

In a periodic unit cell, the atoms within the cell interact with all the atoms both inside
the unit cell, as well as those in neighboring super cells.

nuc nuc — ZQZ Z ri; +n

i VERD)

This is a slowly (conditionally converging) series! The [SUEIEERELEEE tackles this.
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© Ewald sum: Core idea 5/ Ewald summation

A set of points charges (left) is the sum of a set of screened charges (right-top) plus a
correction of screening charges of opposite sign.

_I_
At large distance, the contribution of screened charges rapidly decays.
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© Terms [ 5/Ewald summation

1. A long-range contribution due to the compensating charge cloud: v,
2. A short-range contribution due to the screened charges: v,

3. A correction term for the on-site spurious self-interaction: v
4

. An electroneutrality term ve,

Apologies!

In the following slides, | am going to show the derivation of these terms. You might
experience “math-overload”. Just try to hang on.
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© Long-range contribution N 5/Ewald summation

The compensating charge cloud corresponds to Gaussians, thus their charge density
corresponds to

3/2 o2
pe(T) = Zq]< ) exp(—a‘F—Rj‘).
Applying an analytical Fourier transform yields

é \/_/dr exp —iG - r>2q]< )3/Qexp (—oz
= %;qjexp( iG - R; ) exp (—%)

T—Rj

)
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© Long-range contribution N 5/Ewald summation

olving the Foisson equation tor

gives

u(G) = \G!Q\/_qu ( iG - R}) exp (—%)

yielding the following energy contribution

E, = 27r Z |q@q|3 exp (ZG (R R )) exp (—%)

G;«éo 0]
) . . .
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© Long-range contribution N 5/Ewald summation

Ignoring any imaginary components, we can simplify the following

E, = %r 2.2 (]g_;.qé exp (zé (ﬁl — R})) exp (—%)

to
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© Self-interaction term [ 5/ Ewald summation

Solving the Poisson equation for a centered Gaussian charge

Vzus('r) = —4mq; (%)3/2 exp (—ar2)
yields

vs(r) = %erf( ar)

which evaluated at r = 0 gives
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© Self-interaction term [ 5/ Ewald summation

Interaction of
«
VS(O) = 2ql\/;a

with a point charge yields the following energy term

1
Es =5 ai-s(0)
2
_ e
=72
2
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© Short-range contribution [ 5/Ewald summation

For the interaction between a point charge with the field of screening charges, we find
- from the previous results - the following potential

Vsr = Z q?] — %erf (\/ar)
J
= Z q7] erfc (\/57“)
J

which gives the following energy term

= ZZ qzq] erfc(\/_|rzj+n\)

A0 1753

& Ivo Filot / i.a.w.filot@tue.nl

Jk\ X
an-sur-Lesse in €rschoo| \/
M H Lesse Winterschool 2024 Wit sglﬁnl - | M/Cj> TU/e 66

@ Plane Wave Density Functional Theory from Scratch




© Electroneutrality term [ 5/Ewald summation

Because the Ewald sum is executed for a non-neutral system, we have to reintroduce
the p(G = 0) term. Since

we find that
=3 )
= 72” 7195 / d7"’1 erfc (var)
Q Q T

- (T1)

& Ivo Filot / i.a.w.filot@tue.nl
M) Han-sur-Lesse Winterschool 2024 @ IM@B TU/e 67

Winter School or

@ Plane Wave Density Functional Theory from Scratch



© Ewald parameters A5/ Ewald summation

In the procedure, there are two guiding parameters
» «a: Width of the Gaussian, chosen such that long-range contributions by the
screened charges rapidly vanish.
» Ecut: The number of plane waves, effectively partitions the calculation between
the long- and short-range parts. A balance is sought that minimizes {G} and {7}
in the equations below.

0 R, )2
E, = 2r 9idi o (G- (R.L- — Rj)) exp [ — G
R Alel da
G#0 i
=5 23 = erte (Va7 + )
47&0 Py |7i5 + 7
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W Section

Self-consistent field procedtire



© Roothaan equations W 6/ Self-consistent field procedure

Solving the electronic structure problem using a basis set is solving the Roothaan
equations.

HC = ESC.
For an orthonormal basis set, this equation simplifies to

HC =EC.
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© Size of a plane-wave basis set [N 6/ Self-consistent field procedure

» In localized-orbital codes, it is common practice to perform a full diagonalization
of H, yet this is infeasible in PW-codes due to the size of the basis set.

» Rather than full diagonalization, we seek only to find the N lowest eigenvalue-
eigenvector pair for the Aufbau principle.

> As H is typically a sparse and diagonally dominant matrix, very efficient
routines exist.
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© Arnoldi method [ 6/Self-consistent field procedure

» Very efficient method than can focus on finding lowest eigenvalue/-vector pairs.
» Does not even require full matrix H, only the result of the operation ¢/ = H¢
should be known.

HI(G) = LGP 0 (@) + Fou [Pt [H(O)] 0 ven()]

where the effective potential is given by

Veff(f) = Vext(f) + VU(F) + ch(F)-
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[ 6/Self-consistent field procedure

© Literally a one-liner in Python!

HI(G) = 51CF 0 () + Fon [ Bl [916)] o (]

1 def matvec(psi, nu, k2):
2 return 0.5 * k2 *x psi + np.fft.fftn(np.fft.ifftn(psi) * nu)

» Kinetic energy is evaluated in reciprocal space
» Potential is evaluated in real-space and then cast back to reciprocal space

> Answer is a vector in reciprocal space: energy contribution per plane wave
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© Total electronic energy [ 6/ Self-consistent field procedure

Suppose the lowest Kohn-Sham orbitals in the plane-wave basis set are known, we can
easily form the electron density

Nvelec/2

}\
3
[U:
-M

The total electronic energy is then given by

Nelec/2

N

1 . S,

Eelec = 5 Z Z |¢] ’ |G‘2 N Z p(ri)’/eff(ri) +Eewa|d
7 7

.

—
kinetic (reciprocal—space) potential (real-space)
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© Potential terms [ 6/ Self-consistent field procedure

Where v(7) = vext(7) + v (T) + vae(7)

Vet () = —4\/—715;3 DG exp (zé )

v () = Fou [—{—Wfpw [p(f)]]
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© Self-consistent field procedure [N 6/ Self-consistent field procedure

Start: Initial gue:

Construct v;[p] and vxc[p]

Approximate lowest N
Kohn-Sham states e >
(Arnoldi method)

Because v depends on p but p is found via v, there
is a “chicken-egg” problem which we can solve in an
iterative procedure.

converged?

» Every step, p is refined by slowly mixing in the new
solution to the old.

Yes.

Calculate Eyogat

P < QPnew + (1 - a)pold

Eqoral converged?

Update p.

» When the calculation generates a density compliant
with the field, calculation is considered converged.

IM/(?:» TU/fe
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© Orbital visualization [ 6/Self-consistent field procedure

» Because plane waves ¢(7) € C, Kohn-Sham states are complex-valued. Orbital
visualization would thus require plotting both real and imaginary parts
(cumbersome).

> Solutions are unique up to a phase factor, such that

() 1 = P(F) - exp (i)

» Purely for visualization purposes, we can (at least partially) cast imaginary
components back to real space optimizing the following metric

mgx Z R [4(77) - exp (i‘P)]Q

° . . X
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© Before real-part optimization

[ 6/Self-consistent field procedure

Ryl
10.0
— 7.51
B
& 5.0 .
> 254
0.0 T
0 5 10
x [a.u.]
JAUZN PN
10.0 le—-18
— 7.5
3
& 5.0
> 254
0.0 T
0 5 10
x[a.u.]

-2

yla.ul

ylaul

R[y2]
10.0
7.5 A
5.0
2.54
0.0 T
0 5 10
x[a.u.]
I{y2]e
10.0 le-12
7.51
5.0 1 .
2.54
0.0 T
0 5 10
x[a.u.]

0.5

0.0

-0.5

yla.ul

yla.ul

R [ysl]
10.0
7.5 0.2
5.0 1 S f[foo
2.5 L 0.2
0.0 T
0 5 10
x[a.u.]
ITy3] 1e-
10.0 le-8 .
7.5
5.0 SR o
2.5
0.0 : -2
0 5 10
x[a.u.]

10.0
7.5 1
5.0
2.5

yla.u]

0.0
0

10.0
7.51
5.01
2.5

ylaul

0.0
0

5 10
x[a.u.]

A Note that 1), has real and imaginary part of roughly equal size.
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© After real-part optimization [N 6/ Self-consistent field procedure

Ryl Ry,] R[ys] R [ya]
10.0 10.0 10.0 10.0 7
7 0.5 02
. 7.5 . 7.5 751 02  _ 7.5 :
5 5 5 5 .
& 5.01 . 0 & 5.01 . 00 & 5.0+ W [[fo0 & 507 0.0
> 254 25 > 254 L 02 T 251 ‘ 02
0.0 T 0.0 T -05 0.0 T 0.0 4
0 5 10 0 5 10 0 5 10 0 5 10
x [a.u.] x[a.u.] x[a.u.] x [a.u.]
Iyl qe- ITy2] 1e- Iysle— 7Twal 1e-
10.0 le-8 10.0 le-8 ) 10.0 le-il 10.0 le-9 1
_ 754 25 _ 751 751 "l 7
5 5 5 ! 5 .
& 5.01 . 00 & 504 . 0 & 5.0 SR o & 5.01 0
> 251 25 ™ 2.5 > 251 L, T 25 '
0.0 ; 0.0 ; -1 0.0 ; 0.0 -1
0 5 10 0 5 10 0 5 10 0 5 10
x[a.u.] x[a.u.] x[a.u.] x[a.u.]

A Note the scales for the imaginary part.
()
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© Rotation angle [ 6/Self-consistent field procedure

Orbital | ¢ (deg) | [o R[|W[}]dF | [, R[|¢ - exp(ip)|?]dF
Y3 0.0000 1.0000 1.0000
o 31.1685 0.7321 1.0000

A rotation by a phase angle of 31 degrees ensures the 14, becomes fully real-valued.
Prior to the rotation, only 73% of 14 resided in the real domain.
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