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 Building a PW-DFT code  1/Course Philosophy

▶ Building a PW-DFT code from scratch is an ambitious though feasible goal.
▶ Limitations to ensure feasibility

▶ Only Γ-point
▶ Cubic unit cell
▶ No pseudopotentials
▶ Restricted (no spin-polarization)

▶ Focusing on the ingredients (so that you can cook at home)
▶ Leaning by doing (exercises + workouts)
▶ Fully working educational code (PyPWDFT) to dissect
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 The Schrödinger equation  2/Recap

We start with the (in)famous time-independent non-relativistic Schrödinger equation

Ĥψ = Eψ

where the Hamiltonian operator Ĥ is given (in atomic units) by

Ĥ = −
N∑
i=1

1

2
∇2

i︸ ︷︷ ︸
Ekinelectrons

−
M∑

A=1

1

2MA
∇2

A︸ ︷︷ ︸
Ekinnuclei

−
N∑
i=1

M∑
A=1

ZA

riA︸ ︷︷ ︸
nuc-el attraction

+

N∑
i=1

N∑
j>i

1

rij︸ ︷︷ ︸
el-el repulsion

+

M∑
A=1

M∑
A>B

ZAZB

RAB︸ ︷︷ ︸
nuc-nuc repulsion
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 Born-Oppenheimer approximation  2/Recap

Nuclei are much heavier than electrons, hence we consider the motion of the electrons
to occur under the static presence of the nuclei.

Ĥ = −
N∑
i=1

1

2
∇2

i −
�
���

��M∑
A=1

1

2MA
∇2

A −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

��
���

��M∑
A=1

M∑
A>B

ZAZB

RAB

by which the result is termed the electronic Hamiltonian

Ĥelec = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij

Note that the nucleus-nucleus repulsion is still used, but only as a static term to the total
electronic energy.
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 Wave function  2/Recap

We have a system of multiple electrons, so we need a wave function that can handle
that. A naive implementation is to simply consider a product of one-electron wave
functions

ΨHartree = χi (x⃗1)χj (x⃗2) · · ·χN (x⃗N )

which is called a Hartree product. Assuming that the spinorbitals form an orthonormal
set

⟨χi (x⃗1) |χj (x⃗1)⟩ = δij

then

ĤelecΨHartree = (ϵ1 + ϵ2 + · · ·+ ϵN )ΨHartree
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 Problem with the Hartree product  2/Recap

The chance to find any of the electrons is given by

|Ψ(x⃗1, x⃗2, · · · , x⃗N )|2 dx⃗1dx⃗2 · · · dx⃗N = |χi (x⃗1)|2 dx⃗1 |χj (x⃗2)|2 dx⃗2 · · · |χN (x⃗N )|2 dx⃗N

For each of the electrons, that chance does not depend on the position of the other
electrons. In other words, electron motion is fundamentally uncorrelated in this wave
function. That cannot be right!
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 Problem with the Hartree product  2/Recap

In reality, electrons will repel each other and thus the chance to find electron 1 at
position x⃗1 depends on the position of, e.g., electron 2 at position x⃗2.

But there is an even more fundamental problem. The Hartree product allows us to
distinguish between individual electrons. Electrons are fundamentally
indistinguishable particles and hence the many-electron wave function should have
this property embedded.
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 Slater determinant  2/Recap

Remember, the x⃗ are the electrons and the χi are the spin-orbitals.

|Ψ(x⃗1, x⃗2, · · · , x⃗N )⟩ = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi (x⃗1) χj (x⃗1) · · · χk (x⃗1)
χi (x⃗2) χj (x⃗2) · · · χk (x⃗2)

...
... · · ·

...
χi (x⃗N ) χj (x⃗N ) · · · χk (x⃗N )

∣∣∣∣∣∣∣∣∣
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 Slater determinant  2/Recap

|Ψ(x⃗1, x⃗2, · · · , x⃗N )⟩ = (N !)
−1/2

∣∣∣∣∣∣∣∣∣
χi (x⃗1) χj (x⃗1) · · · χk (x⃗1)
χi (x⃗2) χj (x⃗2) · · · χk (x⃗2)

...
... · · ·

...
χi (x⃗N ) χj (x⃗N ) · · · χk (x⃗N )

∣∣∣∣∣∣∣∣∣
▶ Satisfies anti-symmetry principle

▶ Electrons become (exchange-)correlated
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 Slater determinant  2/Recap

|Ψ(x⃗1, x⃗2, · · · , x⃗N )⟩ = (N !)
−1/2

∣∣∣∣∣∣∣∣∣
χi (x⃗1) χj (x⃗1) · · · χk (x⃗1)
χi (x⃗2) χj (x⃗2) · · · χk (x⃗2)

...
... · · ·

...
χi (x⃗N ) χj (x⃗N ) · · · χk (x⃗N )

∣∣∣∣∣∣∣∣∣
Important

This is still an uncorrelated wave function because electrons with opposite spin remain
uncorrelated.
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 Combining Slater Determinant and Hamiltonian (1)  2/Recap

Inserting a Slater determinant

|Ψ(x⃗1, x⃗2, · · · , x⃗N )⟩ = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi (x⃗1) χj (x⃗1) · · · χk (x⃗1)
χi (x⃗2) χj (x⃗2) · · · χk (x⃗2)

...
... · · ·

...
χi (x⃗N ) χj (x⃗N ) · · · χk (x⃗N )

∣∣∣∣∣∣∣∣∣
into

Ĥelec = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
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 Combining Slater Determinant and Hamiltonian (2)  2/Recap

E = ⟨Ψ|Ĥ|Ψ⟩ =
N∑
i

⟨χi| −
1

2
∇2|χi⟩︸ ︷︷ ︸

kinetic energy

+

N∑
i

⟨χi|
M∑

A=1

ZA

ri,a
|χi⟩︸ ︷︷ ︸

nuclear attraction

· · ·

· · ·+ 1

2

N∑
i

N∑
j

⟨χiχj |
1

rij
|χiχj⟩︸ ︷︷ ︸

coulomb repulsion

−⟨χiχj |
1

rij
|χjχi⟩︸ ︷︷ ︸

exchange
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 Using the electron density  2/Recap

Hartree-Fock is a wave function based method, can we switch to only using the
electron density and are there advantages to that?
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 External potential and ν-representability  2/Recap

The electrons are under the influence of an external potential due to the nuclei

νext(r⃗) ≡
∑
i

− Zi

|r⃗ − R⃗i|
.

In combination with the number of electrons, this determines all the ground state
properties (up to an arbitrary constant) of the system.
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 Proof  2/Recap

Suppose there are two different external potentials that yield the same electron density.
These would have different Hamiltonians and thus a different ground state wave
function. From the variational principle we can then state

E1 < ⟨Ψ2|Ĥ1|Ψ2⟩ = ⟨Ψ2|Ĥ2|Ψ2⟩+ ⟨Ψ2|Ĥ1 − Ĥ2|Ψ2⟩

= E2 +

∫
ρ(r⃗) [νext,1(r⃗)− νext,2(r⃗)] dr⃗.

And by swapping E1 and E2 we would then find the contradiction

E1 + E2 < E2 + E1.
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 Defining total energy  2/Recap

Suppose we have a system of M nuclei and N electrons, then its energy as function of
the electron density ρ is given by

Eν [ρ] = T [ρ(r⃗)]︸ ︷︷ ︸
kinetic

+ V [ρ(r⃗)]︸ ︷︷ ︸
nuclear attraction

+ U [ρ(r⃗)]︸ ︷︷ ︸
electron-electron

=

∫
ρ(r⃗)νext(r⃗)dr⃗ + FHK[ρ]

where FHK[ρ] is a so-called universal functional

FHK[ρ] = T [ρ] + U [ρ],
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 Variational principle  2/Recap

To find the ground state electron density ρ0(r⃗), we are tasked by looking for that ρ0(r⃗)
that minimizes Eν [ρ].

Eν [ρ] = T [ρ(r⃗)] + V [ρ(r⃗)] + U [ρ(r⃗)]

This procedure is however hindered by having no explicit expressions for T [ρ(r⃗)] and the
non-classical part of U [ρ(r⃗)].
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 Kohn-Sham method  2/Recap

Instead of solving for a system of interacting electrons, we use a fictitious proxy
system of non-interacting electrons with the same density as the interacting system.
For that system, the Hamiltonian is very simple

Ĥs =

N∑
i

1

2
∇2

i +

N∑
i

νs(r⃗i)

Application of a Slater determinant on this Hamiltonian would yield

ĥsχi =

(
−1

2
∇+ νs(r⃗)

)
χi = ϵiχi
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 Kinetic energy and electron density  2/Recap

Because the electrons are (assumed) to be non-interacting, the expressions for the
kinetic energy and the total electron density become very simple

Ts[ρ] =

N∑
i

⟨χi| −
1

2
∇2|χi⟩

ρ(r⃗) = |χi(r⃗)|2.
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 The big term-shuffle  2/Recap

A non-interacting system is of course not equal to an interacting system, and this
discrepancy has to be fixed. The trick to solve this is to transfer the interacting part of
T [ρ] to a so-called exchange-correlation functional as defined by

Exc[ρ] ≡ (T [ρ]− Ts[ρ]) +

Vee[ρ]− J [ρ]︸︷︷︸
classical e-e


by which the universal function F [ρ] becomes

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ].
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 Kohn-Sham energy expression  2/Recap

DFT:

E[ρ] = Ts[ρ] +

∫
v(r⃗)ρ(r⃗) dr⃗ + J [ρ] + Exc[ρ]

=

[∑
i

∫
χ∗
i

(
−1

2
∇2

i

)
χi dr⃗

]
+

∫
v(r⃗)ρ(r⃗) dr⃗ + J [ρ] + Exc[ρ].

HF:

E = ⟨Ψ|Ĥ|Ψ⟩ =
N∑
i

⟨χi| −
1

2
∇2|χi⟩+

N∑
i

⟨χi|
M∑

A=1

ZA

ri,a
|χi⟩ · · ·

· · ·+ 1

2

N∑
i

N∑
j

[
⟨χiχj |

1

rij
|χiχj⟩ − ⟨χiχj |

1

rij
|χjχi⟩

]
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 Summary  2/Recap

Kohn-Sham method: one-electron orbitals

ĥsχi =

(
−1

2
∇+ νs(r⃗)

)
χi = ϵiχi
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	 Section

Plane waves
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 Unitcell: home of the plane waves  3/Plane waves

a⃗2

a⃗3

a⃗1

Unitcell matrix:

M =

a⃗1a⃗2
a⃗3

 .

Volume:

Ω = det |M| = a⃗1 · (a⃗2 × a⃗3)
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 Planewaves & Reciprocal grid  3/Plane waves

Plane wave:
ϕ(G⃗, r⃗) =

1√
Ω
exp

(
iG⃗ · r⃗

)
Plane wave vectors:

G⃗i1,i2,i3 =

(
i1 −

N1

2

)
b⃗1+(

i2 −
N2

2

)
b⃗2+(

i3 −
N3

2

)
b⃗3

Reciprocal matrix vectors:

b⃗1 = 2π
a⃗2 × a⃗3

Ω

b⃗2 = 2π
a⃗3 × a⃗1

Ω

b⃗3 = 2π
a⃗1 × a⃗2

Ω

Reciprocal matrix:

B =

b⃗1b⃗2
b⃗3

 = 2π (M⊺)−1
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 Plane waves are normalized  3/Plane waves

⟨ϕ(G⃗, r⃗)|ϕ(G⃗, r⃗)⟩ = 1

Ω

∫
Ω
dr⃗ exp

(
−iG⃗ · r⃗

)
exp

(
+iG⃗ · r⃗

)
=

1

Ω

∫
Ω
dr⃗ 1 =

Ω

Ω
= 1.

 Observe
▶ Complex-conjugate is taken for the ket
▶ Results in “cancellation” of exponential term
▶ Effectively integration over unit cell volume
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 Orthonormal basis set  3/Plane waves

⟨ϕ(G⃗′, r⃗)|ϕ(G⃗, r⃗)⟩ = 1

Ω

∫
Ω
dr⃗ exp

(
−iG⃗′ · r⃗

)
exp

(
+iG⃗ · r⃗

)
=

1

Ω

∫
Ω
dr⃗ exp

(
i
(
G⃗− G⃗′

)
· r⃗
)

= δG⃗,G⃗′

 Observe
▶ (G⃗− G⃗′) · r⃗ always corresponds to a multiple of 2π
▶ exp(i · 2π · n) = 0 for n ∈ Z̸=0 (recall the unit circle)
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 Representation using basis set  3/Plane waves

Any function inside the unitcell M that admits to

u(r⃗) = u(r⃗ + R⃗)

can be represented by a linear combination of plane waves

u(r⃗) =
1√
Ω

∑
G⃗

ũ(G⃗) exp
(
iG⃗ · r⃗

)
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 Finding ũ(G⃗)  3/Plane waves

Given

u(r⃗) =
1√
Ω

∑
G⃗

ũ(G⃗) exp
(
iG⃗ · r⃗

)

we can find ũ(G⃗) via

⟨ϕ(G⃗′, r⃗)|u(r⃗)⟩ =
∫
Ω
dr⃗

1

Ω

∑
G⃗

ũ(G⃗) exp
(
i
(
G⃗− G⃗′

)
· r⃗
)

=
∑
G⃗

ũ(G⃗)δG⃗,G⃗′

= ũ(G⃗′).
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 Basis set truncation  3/Plane waves

The equality

u(r⃗) =
1√
Ω

∑
G⃗

ũ(G⃗) exp
(
iG⃗ · r⃗

)
is only true for an infinitely large set of plane waves. Typically we use a number of
plane waves smaller than ∞ by defining a cut-off energy such that

1

2

∣∣∣G⃗∣∣∣2 < Ecut.

For sufficiently large sets, the top equation remains approximately true (tunable to
within proper numerical approximation).
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 Finding {ũ(G⃗)}  3/Plane waves

▶ Finding the plane wave expansion coefficients {ũ(G⃗)} can be done via numerical
integration on a per-plane wave basis. This is however very inefficient.

▶ Finding all plane wave expansion coefficients {ũ(G⃗)} simultaneously exploits
certain overlap in operations.

Method: Fast Fourier Transforms
Superfast and trivially parallellizable algorithm for obtaining plane waves
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 Fast Fourier Transform algorithm  3/Plane waves

Implementation of Fast Fourier Transform (FFT) differs between software packages.
Always read the documentation! Most packages define the inverse DFT, in one
dimension, via

am =
1

n

n−1∑
k=0

Ak exp

(
2πi

mk

n

)
Or in three dimensions, using our notation, as

axyz =
1

NxNyNz

∑
G⃗

ã(G⃗) exp
(
iG⃗ · (x, y, z)⊺

)
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 Example: FFT in 1D  3/Plane waves

y = sin

(
2π · 1

2
x

)
+ 2 sin (2π · x) + 4 sin

(
2π · 3

2
x

)

0 2 4 6 8 10 12

5

0

5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

25

50

75

100

(left) Original signal; (right) FFT
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 Fast Fourier Transform algorithm in 3D  3/Plane waves

The typical implementation

axyz =
1

NxNyNz

∑
G⃗

ã(G⃗) exp
(
iG⃗ · (x, y, z)⊺

)
differs from our definition

u(r⃗) =
1√
Ω

∑
G⃗

ũ(G⃗) exp
(
iG⃗ · r⃗

)
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 Fast Fourier Transform: Details  3/Plane waves

▶ The FFT algorithm is agnostic about our unit cell. It simply takes a a bunch of
numbers (3D-array) and spits out the corresponding expansion coefficients.

▶ Resulting coefficients need to be corrected to comply with out definition

▶ Reciprocal space vectors G⃗ need to be established to use the plane-wave basis in
further calculations.
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 Fast Fourier Transform: Procedure  3/Plane waves

Points
1. Sample unit cell using equidistant

sampling points
2. Reformat as ordered 3D array

(z > y > x)
3. Insert into FFT algorithm
4. Correct coefficients by factor NxNyNz√

Ω

G⃗-vectors
1. Calculate G-vectors per dimension
2. Consolidate into 3D vector field
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 Example Transformation  3/Plane waves

1 import numpy as np
2
3 npts = 64 # number of data points per cartesian direction
4 sz = 10 # size of the cubic unit cell
5
6 c = np.linspace(0, sz, npts, endpoint=False)
7 z, y, x = np.meshgrid(c, c, c, indexing=’ij’)
8
9 r = np.zeros((npts,npts,npts,3))

10 r[:,:,:,0] = x
11 r[:,:,:,1] = y
12 r[:,:,:,2] = z
13
14 # build Gaussian
15 r -= (5,5,5) # put Gaussian at the center
16 r2 = np.einsum(’ijkl,ijkl->ijk’, r, r)
17 psi = (2.0 / np.pi)**(3/4) * np.exp(-r2)
18
19 ct = np.sqrt(sz**3) / npts**3
20 psi_fft = np.fft.fftn(psi) * ct
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 Example Calculating Reciprocal space vectors  3/Plane waves

1 def build_fft_vectors(sz, npts):
2 # calculate plane wave vector coefficients in one dimension
3 k = np.fft.fftfreq(npts) * 2.0 * np.pi * (npts / sz)
4
5 # construct plane wave vectors
6 k3, k2, k1 = np.meshgrid(k, k, k, indexing=’ij’)
7
8 kvec = np.zeros((npts,npts,npts,3))
9 kvec[:,:,:,0] = k1

10 kvec[:,:,:,1] = k2
11 kvec[:,:,:,2] = k3
12
13 k2 = np.einsum(’ijkl,ijkl->ijk’, kvec, kvec)
14
15 return kvec, k2
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 Tips for success (or at least preventing frustration)  3/Plane waves

 Important
▶ From the perspective of your computer, the arrays are just chunks of number.

They carry no metadata; only you can interpret them.
▶ The scalar fields and vectors fields are “aligned” . Do not change their order nor

their shape.
▶ Stick to the “protocol” when building and working with these numerical objects.
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 Using plane waves: calculation of properties  3/Plane waves

Given a wave function ψ as expanded using the plane-wave basis set (PWBS):

ψ(r⃗) =
1√
Ω

∑
G⃗

ψ̃(G⃗) exp
(
iG⃗ · r⃗

)
We can easily evaluate the kinetic energy via

Ekin =
1

2

∑
G⃗

|ψ̃(G⃗)|2 · |G⃗|2
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 Derivation kinetic energy  3/Plane waves

Provided
ψ(r⃗) =

1√
Ω

∑
G⃗

ψ̃(G⃗) exp
(
iG⃗ · r⃗

)
the kinetic energy can be easily derived to correspond to

Ekin =

〈
ψ(r⃗)

∣∣∣∣−1

2
∇2

∣∣∣∣ψ(r⃗)〉
=

1

2

∑
G⃗′

∑
G⃗

ψ̃(G⃗)ψ̃(G⃗′)|G⃗|2 ⟨ϕ(G⃗′)|ϕ(G⃗)⟩

=
1

2

∑
G⃗′

∑
G⃗

ψ̃(G⃗)ψ̃(G⃗′)|G⃗|2δG,G′

=
1

2

∑
G⃗

|ψ̃(G⃗)|2 · |G⃗|2
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 Notation  3/Plane waves

From here on, we introduce the following notation for the FFT according to prevalent
in numerical implementations

ψ̃(G⃗) = F [ψ(r⃗)]

and according to a conventional plane-wave basis set via

ψ̃G⃗ = Fpw [ψ(r⃗)]

There also exist the inverse transforms, indicated by “−1”, e.g.

ψ(r⃗) = F−1
[
ψ̃(G⃗)

]
2 1,2
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 Three important potentials  4/Potentials

▶ Nucleus-electron (external potential)
▶ Electron-electron (Hartree potential; Classical electron-electron interactions)
▶ Exchange-correlation (Non-classical electron-electron interactions)

There are also nuclear-nuclear interactions, which we will treat in the next section.
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 Poisson equation  4/Potentials

An easy way to solve for a classical electrostatic potential, either electron-electron or
nucleus-electron is via solving Poisson’s equation .

∇2φ(r⃗) = −4πρ(r⃗)

ρ acts as the charge density , either electron density of nuclear point charges.
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 Plane-wave expansion of a charge density  4/Potentials

Suppose that

ρ(r⃗) =
1√
Ω

∑
G⃗

ρ̃(G⃗) exp
(
iG⃗ · r⃗

)
.

the Poisson equation can be easily solved, yielding

φ(r⃗) = − 4π√
Ω

∑
G⃗

ρ̃(G⃗)

|G⃗|2
exp

(
iG⃗ · r⃗

)
.
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 Divergent term  4/Potentials

The term corresponding to G⃗ = 0⃗ diverges, so we remove this term.

φ(r⃗) = − 4π√
Ω

∑
G⃗ ̸=0⃗

ρ̃(G⃗)

|G⃗|2
exp

(
iG⃗ · r⃗

)
.

This term correspond to the average charge in the unit cell. For a neutral system, this
term should be zero. More specifically, all the divergent terms for electrostatic
interactions (e-e, e-n and n-n) should cancel out.
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 Hartree potential  4/Potentials

Given an electron density, ρ(r⃗) we can thus easily construct the Hartree potential via
consecutive forward and backward FFTs

φ(r⃗) = F−1
pw

[
+

4π

|G⃗|2
Fpw [ρ(r⃗)]

]
G̸⃗=0⃗

.

 Note
Observe the “+” sign in the above equation because ρ corresponding to the electron
density is negative charge.
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 Hartree potential: Python code  4/Potentials

1 # construct charge density
2 rho = np.power(psi,2)
3 fft_rho = np.fft.fftn(rho)
4
5 # build fft vectors
6 kvec, k2 = build_fft_vectors(sz, npts)
7
8 # build the Hartree potential in reciprocal space
9 with np.errstate(divide=’ignore’, invalid=’ignore’):

10 fft_hartree = 4.0 * np.pi * fft_rho / k2
11 fft_hartree[~np.isfinite(fft_hartree)] = 0.0
12
13 # perform inverse FFT
14 hartree = np.fft.ifftn(fft_hartree)
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 Nuclear attraction  4/Potentials

For the nuclear attraction, the charge field are simply point charges

ρnuclii(r⃗) =
∑
j

qjδ(r⃗ − R⃗j).

and thus the Fourier transform has a nice analytical solution

⟨ϕ(G⃗, r⃗)|u(r⃗)⟩ = 1√
Ω

∫
Ω
dr⃗
∑
G⃗

exp
(
iG⃗ · r⃗

)
· δ(r⃗ − R⃗j)

=
1√
Ω
exp

(
iG⃗ · R⃗j

)
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 External potential  4/Potentials

And we only need a backward transform for the nuclear potential

νext = −
4π√
Ω
F−1

pw

∑
G̸⃗=0⃗

|G⃗|−2
∑
j

exp
(
iG⃗ · R⃗j

) .
Mind the exclusion of the divergent term!
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 External potential: Python code for single Z = 1 nucleus  4/Potentials

1 def build_external_potential(npts, sz):
2 """
3 Calculate the external potential by single nucleus with charge Z=1
4 """
5 # build fft vectors
6 kvec, k2 = build_fft_vectors(sz, npts)
7 R = (sz/2, sz/2, sz/2)
8
9 # generate structure factor and nuclear attraction field

10 sf = np.exp(-1j * kvec @ R) / np.sqrt(sz**3)
11 ct = np.sqrt(sz**3) / npts**3
12 with np.errstate(divide=’ignore’, invalid=’ignore’):
13 nupotg = -4.0 * np.pi / k2
14 nupotg[0,0,0] = 0
15
16 vnuc = np.fft.ifftn(sf * nupotg) / ct
17
18 return vnuc
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 Exchange-correlation functional  4/Potentials

▶ Treats non-classical electron-electron interaction
▶ Best evaluated in real-space
▶ Fixed recipes available; outside the scope of this lecture
▶ Most simple type is SVWN5 (LDA)

▶ Slater exchange (S)
▶ Correlation by Padé-approximant of Vosko, Wilk and Nusair, equation 5 of their

paper (VWN5)

▶ Great numerical libraries readily available (libXC)

2 3,4



57
g
b


Ivo Filot / i.a.w.filot@tue.nl

Han-sur-Lesse Winterschool 2024

Plane Wave Density Functional Theory from Scratch

	 Section

Ewald summation



58
g
b


Ivo Filot / i.a.w.filot@tue.nl

Han-sur-Lesse Winterschool 2024

Plane Wave Density Functional Theory from Scratch

 Interatomic potential  5/Ewald summation

In a periodic unit cell, the atoms within the cell interact with all the atoms both inside
the unit cell, as well as those in neighboring super cells.

Enuc-nuc =
1

2

∑
i

qi
∑
j ̸=i,n⃗

qj
rij + n⃗

,

This is a slowly (conditionally converging) series! The Ewald method tackles this.
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 Ewald sum: Core idea  5/Ewald summation

A set of points charges (left) is the sum of a set of screened charges (right-top) plus a
correction of screening charges of opposite sign.

= +

At large distance, the contribution of screened charges rapidly decays.
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 Terms  5/Ewald summation

1. A long-range contribution due to the compensating charge cloud: νlr

2. A short-range contribution due to the screened charges: νsr

3. A correction term for the on-site spurious self-interaction: νs

4. An electroneutrality term νen

Apologies!
In the following slides, I am going to show the derivation of these terms. You might
experience “math-overload”. Just try to hang on.
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 Long-range contribution  5/Ewald summation

The compensating charge cloud corresponds to Gaussians, thus their charge density
corresponds to

ρc(r⃗) =
∑
j

qj

(α
π

)3/2
exp

(
−α

∣∣∣r⃗ − R⃗j

∣∣∣2) .
Applying an analytical Fourier transform yields

ρc(G⃗) =
1√
Ω

∫
Ω
dr⃗ exp

(
−iG⃗ · r⃗

)∑
j

qj

(α
π

)3/2
exp

(
−α

∣∣∣r⃗ − R⃗j

∣∣∣2)

=
1√
Ω

∑
j

qj exp
(
−iG⃗ · R⃗j

)
exp

(
−|G⃗|

2

4α

)
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 Long-range contribution  5/Ewald summation

Solving the Poisson equation for

ρc(G⃗) =
1√
Ω

∑
j

qj exp
(
−iG⃗ · R⃗j

)
exp

(
−|G⃗|

2

4α

)

gives

νlr(G⃗) =
4π

|G⃗|2
√
Ω

∑
j

qj exp
(
−iG⃗ · R⃗j

)
exp

(
−|G⃗|

2

4α

)

yielding the following energy contribution

Elr =
2π

Ω

∑
G̸⃗=0

∑
i,j

qiqj

|G⃗|2
exp

(
iG⃗ ·

(
R⃗i − R⃗j

))
exp

(
−|G⃗|

2

4α

)
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 Long-range contribution  5/Ewald summation

Ignoring any imaginary components, we can simplify the following

Elr =
2π

Ω

∑
G̸⃗=0

∑
i,j

qiqj

|G⃗|2
exp

(
iG⃗ ·

(
R⃗i − R⃗j

))
exp

(
−|G⃗|

2

4α

)

to

Elr =
2π

Ω

∑
G⃗ ̸=0

∑
i,j

qiqj

|G⃗|2
cos
(
G⃗ ·
(
R⃗i − R⃗j

))
exp

(
−|G⃗|

2

4α

)
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 Self-interaction term  5/Ewald summation

Solving the Poisson equation for a centered Gaussian charge

∇2νs(r) = −4πqj
(α
π

)3/2
exp

(
−αr2

)
yields

νs(r) =
qi
r
erf
(√
αr
)
,

which evaluated at r = 0 gives

νs(0) = 2qi

√
α

π
,
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 Self-interaction term  5/Ewald summation

Interaction of

νs(0) = 2qi

√
α

π
,

with a point charge yields the following energy term

Es =
1

2

∑
i

qi · νs(0)

=

√
α

π

∑
i

q2i .
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 Short-range contribution  5/Ewald summation

For the interaction between a point charge with the field of screening charges, we find
- from the previous results - the following potential

νsr =
∑
j

qj
r
− qj
r
erf
(√
αr
)

=
∑
j

qj
r
erfc

(√
αr
)

which gives the following energy term

Esr =
1

2

∑
n̸⃗=0⃗

∑
i ̸=j

qiqj
|r⃗ij + n⃗|

erfc
(√
α|r⃗ij + n⃗|

)
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 Electroneutrality term  5/Ewald summation

Because the Ewald sum is executed for a non-neutral system, we have to reintroduce
the ρ̃(G⃗ = 0⃗) term. Since

ρbg =

∑
i qi
Ω

we find that

Een =
1

2

∫
Ω

dr⃗ ρbgνsr

=

∑
i,j qiqj

Ω

∫
Ω

dr⃗
1

r
erfc

(√
αr
)

=
π

2αΩ

(∑
i

qi

)2
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 Ewald parameters  5/Ewald summation

In the procedure, there are two guiding parameters
▶ α: Width of the Gaussian, chosen such that long-range contributions by the

screened charges rapidly vanish.
▶ Ecut: The number of plane waves, effectively partitions the calculation between

the long- and short-range parts. A balance is sought that minimizes {G⃗} and {n⃗}
in the equations below.

Elr =
2π

Ω

∑
G̸⃗=0

∑
i,j

qiqj

|G⃗|2
cos
(
G⃗ ·
(
R⃗i − R⃗j

))
exp

(
−|G⃗|2

4α

)

Esr =
1

2

∑
n̸⃗=0⃗

∑
i ̸=j

qiqj
|r⃗ij + n⃗| erfc

(√
α|r⃗ij + n⃗|

)
2 5
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 Roothaan equations  6/Self-consistent field procedure

Solving the electronic structure problem using a basis set is solving the Roothaan
equations.

HC = ESC.

For an orthonormal basis set, this equation simplifies to

HC = EC.
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 Size of a plane-wave basis set  6/Self-consistent field procedure

▶ In localized-orbital codes, it is common practice to perform a full diagonalization
of H, yet this is infeasible in PW-codes due to the size of the basis set.

▶ Rather than full diagonalization, we seek only to find the N lowest eigenvalue-
eigenvector pair for the Aufbau principle.

▶ As H is typically a sparse and diagonally dominant matrix, very efficient
routines exist.
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 Arnoldi method  6/Self-consistent field procedure

▶ Very efficient method than can focus on finding lowest eigenvalue/-vector pairs.
▶ Does not even require full matrix H, only the result of the operation c⃗ ′ = Hc⃗

should be known.

Ĥψ̃(G⃗) = 1

2
|G⃗|2 ◦ ψ̃(G⃗) + F̂pw

[
F̂−1

pw

[
ψ̃(G⃗)

]
◦ νeff(r⃗)

]
where the effective potential is given by

νeff(r⃗) = νext(r⃗) + νU (r⃗) + νxc(r⃗).
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 Literally a one-liner in Python!  6/Self-consistent field procedure

Ĥψ̃(G⃗) = 1

2
|G⃗|2 ◦ ψ̃(G⃗) + F̂pw

[
F̂−1

pw

[
ψ̃(G⃗)

]
◦ νeff(r⃗)

]
1 def matvec(psi, nu, k2):
2 return 0.5 * k2 * psi + np.fft.fftn(np.fft.ifftn(psi) * nu)

▶ Kinetic energy is evaluated in reciprocal space
▶ Potential is evaluated in real-space and then cast back to reciprocal space
▶ Answer is a vector in reciprocal space: energy contribution per plane wave
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 Total electronic energy  6/Self-consistent field procedure

Suppose the lowest Kohn-Sham orbitals in the plane-wave basis set are known, we can
easily form the electron density

ρ(r⃗) = 2

Nelec/2∑
j

∣∣∣F̂−1
pw

[
ψ̃j(G⃗)

]∣∣∣2
The total electronic energy is then given by

Eelec =
1

2

Nelec/2∑
j

∑
G⃗

|ψ̃j(G⃗)|2|G⃗|2


︸ ︷︷ ︸
kinetic (reciprocal-space)

+
Ω

N

N∑
i

ρ(r⃗i)νeff(r⃗i)︸ ︷︷ ︸
potential (real-space)

+Eewald
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 Potential terms  6/Self-consistent field procedure

Where ν(r⃗) = νext(r⃗) + νU (r⃗) + νxc(r⃗)

νext(r⃗) = −
4π√
Ω
F−1

pw

∑
G̸⃗=0⃗

|G⃗|−2
∑
j

exp
(
iG⃗ · R⃗j

)

νU (r⃗) = F−1
pw

[
− 4π

|G⃗|2
Fpw [ρ(r⃗)]

]
G⃗ ̸=0⃗

.

νxc(r⃗) = −
δExc[ρ(r⃗)]

δρ(r⃗)
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 Self-consistent field procedure  6/Self-consistent field procedure

Start: Initial guess for ρ

Construct νJ[ρ] and νxc[ρ]

Approximate lowest N
Kohn-Sham states
(Arnoldi method)

{ψi}N converged?

Calculate Etotal

Etotal converged? Update ρ

Set ψ0

Done

Yes

Yes

No

No

▶ Because ν depends on ρ but ρ is found via ν, there
is a “chicken-egg” problem which we can solve in an
iterative procedure.

▶ Every step, ρ is refined by slowly mixing in the new
solution to the old.

ρ← αρnew + (1− α)ρold

▶ When the calculation generates a density compliant
with the field, calculation is considered converged.
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 Orbital visualization  6/Self-consistent field procedure

▶ Because plane waves ϕ(r⃗) ∈ C, Kohn-Sham states are complex-valued. Orbital
visualization would thus require plotting both real and imaginary parts
(cumbersome).

▶ Solutions are unique up to a phase factor, such that

ψ(r⃗) ′ ← ψ(r⃗) · exp (iφ)

▶ Purely for visualization purposes, we can (at least partially) cast imaginary
components back to real space optimizing the following metric

max
φ

(∑
i

R [ψ(r⃗i) · exp (iφ)]2
)
.
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 Before real-part optimization  6/Self-consistent field procedure
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 Note that ψ4 has real and imaginary part of roughly equal size.
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 After real-part optimization  6/Self-consistent field procedure
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 Note the scales for the imaginary part.
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 Rotation angle  6/Self-consistent field procedure

Orbital φ (deg)
∫
ΩR[|ψ|2]dr⃗

∫
ΩR[|ψ · exp(iφ)|2]dr⃗

ψ3 0.0000 1.0000 1.0000
ψ4 31.1685 0.7321 1.0000

A rotation by a phase angle of 31 degrees ensures the ψ4 becomes fully real-valued.
Prior to the rotation, only 73% of ψ4 resided in the real domain.
2 6,7,8
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