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The electronic source code associated with these questions can be found at https://github.
com/ifilot/hsl-pwdft-exercises. We recommend to use the Spyder IDE as provided as part
of the Anaconda Software Suite. Installation instructions for Windows, MacOS and Linux can
be found at https://docs.anaconda.com/anaconda/install/.

EXERCISE 1

The wave functions corresponding to the double degenerate 1π molecular orbitals of the CO
molecule, henceforth referred to as ψ5 and ψ6, are calculated at the HF/sto-3g level of theory.
These wave functions are sampled in a 10 × 10 × 10 a.u. cubic unit cell using 64 grid points
per Cartesian direction. The corresponding scalar fields are stored as mo5.npy and mo6.npy and
organized such that z is the slowest moving index and x the fastest moving index.

a) Visualize the two molecular orbitals by producing a contour plot on the xy and xz planes for
ψ5 and ψ6, respectively.

b) Show by means of Equation (1), corresponding to simple numerical integration,

I = ∆V
∑
i

|ψ(r⃗i)|2 (1)

that the following properties hold:

• The two molecular orbitals are normalized in real-space.

• The two molecular orbitals are orthogonal with respect to each other.

c) Perform a Fourier transform on both molecular orbitals via

ψ̃(G⃗) = Fpw[ψ(r⃗i)] (2)

and show that in reciprocal space, i.e. using the Fourier expansion coefficients, that the molecular
orbitals remain orthonormal by means of Equation (3):

⟨ψi|ψj⟩ =
∑
G⃗

ψ̃i(G⃗) · ψ̃∗
j (G⃗) (3)
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IMPORTANT Recall that the Fast Fourier Transform, such as implemented in Numpy, re-
quires an additional ‘renormaliziation’ such that it complies with our expansion definition:

ψ(r⃗) =
1√
Ω

∑
G⃗

ψ̃(G⃗) exp
(
iG⃗ · r⃗

)
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EXERCISE 2

Calculate the kinetic energy of the 1π molecular orbitals of the CO molecule in reciprocal
space by means of Equation (4).

Ekin =
1

2

∑
G⃗

ψ̃(G⃗) · ψ̃∗(G⃗) · |G⃗|2 (4)

• Show that the result is approximately 2.0 Ht.

• Verify that both molecular orbitals yield the same kinetic energy.

IMPORTANT Ensure that the ordering of the G⃗-vectors in {G⃗} is congruent with the def-
inition of the specific FFT (here: numpy.fft) that you are using. Furthermore, similar to the
scalar field in real-space, Gz should be the slowest moving index and Gx the fastest moving
index. Both aspects can be achieved by first constructing the values for the G⃗-vectors for a
given lattice vectors and then assembling these into the three-dimensional array. To construct
the vector elements, one can use numpy.fft.fftfreq. To assemble them into a larger array,
one can use numpy.meshgrid. Read the documentation of both these functions to ensure you
understand how they work.

EXERCISE 3

Consider the normalized wave function centered at the origin as described by

ψ(r⃗) =

(
2

π

)3/4

exp
(
−|r⃗|2

)
. (5)

This wave function will be sampled in a unit cell of 10× 10× 10 a.u.

a) Build a script that allows you to sample Equation (5) using a variable number of sampling
points per Cartesian direction. The result should be a scalar field using the same convention as
used in previous exercises (z being the slowest moving index and x the fastest moving index).

b) Show that Equation (5) is indeed normalized by performing a numerical integration in real-
space.

c) Construct the electron density in real-space via

ρ(r⃗) = |ψ(r⃗)|2 (6)

and determine its discretized Fourier transform via

ρ̃(G⃗) = F [ρ(r⃗)]. (7)

No renormalization is required in this case.
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d) Calculate the Hartree potential in reciprocal space by performing. Set φ̃(G⃗ = 0⃗) = 0. Ap-
propriately handle or avoid the division by zero in Python.

φ̃(G⃗) =
4π

|G⃗|2
ρ̃(G⃗), G⃗ ̸= 0⃗ (8)

e) Construct the Hartree potential in real-space by performing the inverse FFT

φ(r⃗) = F−1

[
4π

|G⃗|2
ρ̃(G⃗)

]
G⃗ ̸=0⃗

(9)

and use the result to calculate the electron-electron repulsion energy in real-space via numerical
integration

Ee-e = ∆V
∑
i

φ(r⃗i)ρ(r⃗i). (10)

Compare your results to the analytical result of 2/
√
π and explore how well the procedure matches

this result with increasing number of sampling points per Cartesian direction.

NOTE Please do not be disturbed if the value found is significantly different from 2/
√
π, we

are going to fix upon that in the next exercise. The reason for the difference is because the G⃗ = 0⃗
term is discarded.

EXERCISE 4

a) Construct the nuclear attraction potential, i.e. the external potential, due to a positive charge
Z = 1 located at the center of a 10×10×10 a.u. unitcell by means of solving the Poisson equation.
Use the fact that the Fourier Transform of a point charge has an exact solution to your advantage
by utilizing

ρ̃nuc(G⃗) =
1√
Ω

exp
(
iG⃗ · R⃗

)
(11)

where R⃗ is the position of the point charge.

b) Calculate the sum of the electron-electron repulsion and the nuclear attraction of a Gaussian
charge as provided by Equation (5) via

E = ∆V
∑
i

[φ(r⃗i) + νext(r⃗i)] ρ(r⃗i). (12)

and compare it to the analytical value of

Eanalytical =
2
(
1−

√
2
)

√
π

. (13)

4 Compiled on: 2024-10-21 07:13:47Z



EXERCISE 5

a) Produce the Ewald sum of a CO molecule positioned in a cubic unit cell with dimensions
10× 10× 10 a.u. with the following coordinates for C and O:

r⃗C = (5.0000, 5.0000, 3.7097)

r⃗O = (5.0000, 5.0000, 5.9677)

Show that the result is approximately -6 Ht. Please do not be disturbed that the result is
negative. This is due to the exclusion of the divergent G⃗ = 0⃗ term in the long-range interaction.

b) Determine the effect of Ecut on the number of neighboring unit cells and the number of plane
waves for the short-range and long-range sampling and consequently, the total computational
time. At which value is the optimal computation time found and how does it compare to the
“default” value of Ecut = 2? Test between 0.5 ≤ Ecut ≤ 6 Ht.

EXERCISE 6

a) In the file ch4_orbs.npy the occupied molecular orbitals of CH4 are stored using a plane
wave basis set. These molecular orbitals are calculated using a 10× 10× 10 a.u. unit cell using
32 sampling points per Cartesian direction. The atomic coordinates are listed below.

r⃗C = (5.0000, 5.0000, 3.7097)

r⃗H1
= (6.1958, 6.1958, 6.1958)

r⃗H2
= (3.8042, 3.8042, 6.1958)

r⃗H3
= (3.8042, 6.1958, 3.8042)

r⃗H4
= (6.1958, 3.8042, 3.8042)

Calculate the total kinetic energy of the electrons in the CH4 molecule and verify that it corre-
sponds (approximately) to Ekin = 31.9192 Ht.

b) Construct the electron density ρ on the basis of the occupied molecular orbitals. Verify
that the total number of electrons corresponds (within numerical approximation) to Nelec =
10 and calculate the electron-electron repulsion energy, the nuclear attraction energy and the
exchange-correlation energy. Show that the energy terms correspond to Ee-e = 19.0539 Ht,
Enuc = −81.7603 Ht, and Exc = −6.4763 Ht.

c) Calculate the nuclear-nuclear repulsion energy by means of the Ewald sum and add all energy
terms together. Show that the total electronic energy corresponds to Etot = −37.7446 Ht.
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EXERCISE 7

The file co_fock.npy contains the Fock matrix for a localized-orbital calculation of the CO
molecule. Calculate the molecular orbital energies for the occupied molecular orbitals of CO,
i.e. its first 7 orbitals, using the Arnoldi method via the function scipy.sparse.linalg.eigsh.
Compare the result with a full canonical matrix diagonalization using numpy.linalg.eigh.

NOTE For scipy.sparse.linalg.eigsh, ensure you set which=’SA’ and k=7 to ensure that
the algorithm searches for the 7 lowest eigenvalues.

EXERCISE 8

a) Perform a plane wave density functional theory calculation of the BH3 molecule using the
program PyPWDFT. Visualize its molecular orbitals. Note that the molecular orbitals are complex
scalar fields and you need to visualize both the real and the complex part.

b) Perform a phase transformation such that the molecular orbitals become real-valued. Con-
vince yourself the operation has not modified the kinetic energy of the molecular orbitals, nor
has impaired upon the orthonormality of the Kohn-Sham states.
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