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Introduction to Machine Learning

Outline

Outline of my Talks

Wednesday 17-19h: Introduction to Machine Learning

Thursday 10-11h: Ab-initio Molecular Dynamics

Thursday 11-13h: On-the-fly Machine Learned Force Fields
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Introduction to Machine Learning

Outline

Outline for today

1 Outline

2 Math notation

3 Machine ’Learning’

4 Linear Regression

5 Logistic Regression

6 Regression craftmanship

7 Neural Networks

8 Optional: build your own NN classifier
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Introduction to Machine Learning

Outline

Reference materials

A Machine Learning book that I recommend is: Pattern
Recognition and Machine Learning , by Christopher M.
Bishop. (Free PDF version, sponsored by Microsoft)
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Introduction to Machine Learning

Math notation

Mathematics notation (1/4)

Scalars are written in lowercase (η) or uppercase (L)

Column vectors are written in bold lowercase (b)

Row vectors are written in bold lowercase transpose (bT)

Elements of vectors are in lowercase with subscript (bi )

Examples:

a =


2

2.1
8
5

, bT =
[
b0 b1 b2

]
, b =

b0

b1

b2

.

dim(a)=4× 1
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Introduction to Machine Learning

Math notation

Mathematics notation (2/4)

The norm or length of a vector is written as ‖b‖ and is most

of the time the `2(R)-norm, ie. ‖b‖2 =
√∑N

i=0 |bi |2.

The inner product of two vectors: 〈a|b〉 = aT · b =
∑N

i=0 aibi
is most of the time the standard scalar product

Element-wise product (’Hadamard’) a ◦ b = c

Examples:

a =


2

2.1
8
5

, ‖a‖ =
√

22 + 2.12 + 82 + 52 ≈ 9.86965045,

〈c|b〉 = cT ·b =
[
c0 c1 c2

]
·

b0

b1

b2

 = c0b0+c1b1+c2b2 = ‖c ◦ b‖2
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Introduction to Machine Learning

Math notation

Mathematics notation (3/4)

Matrices are written in bold uppercase (W)

Elements of matrices are in uppercase with subscript (Wij ,
with i the row and j the column) or as W[i , j ]

W[i , :] denotes the i ’th row of the matrix W

W[:, j ] denotes the j ’th column of the matrix W

Examples:

W =

[
W1,1 W1,2

W2,1 W2,2

]
,W[2, :] =

[
W2,1 W2,2

]
,W[:, 2] =

[
W1,2

W2,2

]
Ra =

[
A B
C D

] [
a1

a2

]
=

[
Aa1 + Ba2

Ca1 + Da2

]
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Introduction to Machine Learning

Math notation

Mathematics notation (4/4)

Note that: bT · b =scalar and b · bT =matrix.

Examples:

a =

ab
c

, b =

de
f

, aT · b =
[
a b c

]
·

de
f

 = ad + be + cd ,

a · bT =

ab
c

 · [d e f
]

=

ad ae af
bd be bf
cd ce cf
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Introduction to Machine Learning

Math notation

OK, Lets start with ML!
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Introduction to Machine Learning

Machine ’Learning’

Machine Learning

’Learning’ can happen in (at least) four ways

Supervised learning;

Unsupervised learning;

Reinforcement learning;

Deep learning.
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Introduction to Machine Learning

Machine ’Learning’

Supervised learning.

You are given data xi , i = 1, . . . ,M with a label (binary: 0, 1,
multiclass: 0, 1, 2, . . .)

You choose a method.

Training dataset: The sample of data used to fit the
model/using the method.

Validation dataset: Is your chosen model/method ’correct’?

Test set: How well does the model predict the class of that
data?
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Introduction to Machine Learning

Linear Regression

ML jargon

Suppose we receive a set of M = 25 measurements of some
observable y depending on the variable x , then the ’ML expert’
would say: You have a dataset containing 25 samples (or
instances). We are going to train, by supervised learning, a
continuous model that maps the feature x to its label y in the
’best’ way we can, but with the lowest possible complexity of the
model.
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Introduction to Machine Learning

Linear Regression

Ok, isn’t that just curve fitting?

Yes, and a good starting place to study ML methods.

Lets define some linear Algebra:

y =



y (0)

y (1)

..

y (m)

..

y (M−1)

 , x =



x (0)

x (1)

..

x (m)

..

x (M−1)

 (1)

We can then build the model:

y = ax (2)

However, considering our data this doesn’t suffice.
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Introduction to Machine Learning

Linear Regression

A 2nd order polynomial would be better: (Note, Hadamard (element-wise)

product x ◦ x)

y = θ2x ◦ x + θ1x + θ0 (3)

To fit this we have to add N = 3 (derived) features to our feature
vector x(m). This then gives the design matrix:

X =


(x (0))0 (x (0))1 (x (0))2

(x (1))0 (x (1))1 (x (1))2

..
(x (m))0 (x (m))1 (x (m))2

..
(x (M−1))0 (x (M−1))1 (x (M−1))2

 =



(
x(0)
)T(

x(1)
)T

..(
x(m)

)T
..(

x(M−1)
)T


(4)

(This particular matrix is also known as a vanderMonde matrix.)

We can now build a linear model:

y = hθ(X) = Xθ, (5)

with hθ the hypothesis function and weight vector θ.
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Introduction to Machine Learning

Linear Regression

The loss function

We now need to find those weights θ such that the error is small when
averaged over all M:

ε = hθ(X)− y ε =
1

M

M−1∑
m=0

εm (6)

In practice, the loss function is used:

L =
1

M

1

2
‖ε‖2

L =
1

M

1

2
‖Xθ − y‖2

(7)

You might recognize the ”least-squares-method”. Minimizing the loss
wrt. to the weights will enable us to optimize the model.
l2 norm: ‖x‖ =

√
x2

0 + x2
1 ...
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Introduction to Machine Learning

Linear Regression

Minimizing the loss function

At minima of the loss we have dL
dθ = 0.

Theorem

The vector x ∈ Rn is a solution of the linear optimisation problem
‖b− Ax‖ = min, if and only if, it statisfies the normal equations:

ATAx = ATb (8)

Xθ = y (9)

M. Bokdam, University of Twente 16 / 81



Introduction to Machine Learning

Linear Regression

Minimizing the loss function

At minima of the loss we have dL
dθ = 0.

Theorem

The vector x ∈ Rn is a solution of the linear optimisation problem
‖b− Ax‖ = min, if and only if, it statisfies the normal equations:

ATAx = ATb (10)

Xθ = y

XTXθ = XTy
(11)
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Introduction to Machine Learning

Linear Regression

Minimizing the loss function

At minima of the loss we have dL
dθ = 0.

Theorem

The vector x ∈ Rn is a solution of the linear optimisation problem
‖b− Ax‖ = min, if and only if, it statisfies the normal equations:

ATAx = ATb (12)

Xθ = y

XTXθ = XTy

(XTX)−1XTXθ = (XTX)−1XTy

(13)
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Introduction to Machine Learning

Linear Regression

Minimizing the loss function

At minima of the loss we have dL
dθ = 0.

Theorem

The vector x ∈ Rn is a solution of the linear optimisation problem
‖b− Ax‖ = min, if and only if, it statisfies the normal equations:

ATAx = ATb (14)

Xθ = y

XTXθ = XTy

(XTX)−1XTXθ = (XTX)−1XTy

θ = (XTX)−1XTy

(15)

Complications with X: overdetermined (ie. not square) and can be huge!
Moore-Penrose inverse: X+ = (XTX)−1XT
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Introduction to Machine Learning

Linear Regression

Minimizing by gradient descent

1 Guess initial θ

2 Optimize: θnew = θold − η dL
dθ = θold − η∇L

3 Compute new loss

4 If |Lold − Lnew | ≤ some threshold, then stop, else go to 2.

∇L =


∂L
∂θ0
∂L
∂θ1

..
∂L

∂θN−1

 , ∂L

∂θ0
= lim

∆→0

L(θ + ∆0)− L(θ)

∆
, ∆0 =


∆
0
..
0

 (16)

or more conveniently:

dL

dθ
=

1

M
XT(Xθ − y) (17)

M. Bokdam, University of Twente 20 / 81



Introduction to Machine Learning

Linear Regression

Minimizing by gradient descent

Setting the ’friction coefficient’ makes a difference:
A. η perfect.
B. η too small.
C. η too large.
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Introduction to Machine Learning

Linear Regression

Learned/fitted model

Be careful when expanding the complexity of your ML model. As shown
here the model of deg=20 shows serious signs of overfitting. You can
recognize this problem when you split your dataset in a training and a
validation set and compare the errors.
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Introduction to Machine Learning

Linear Regression

The regularized loss function

To reduce overfitting, add an additional constrain that suppresses large
weight values θi :

L =
1

M

1

2
‖Xθ − y‖2 +

λ

2
‖θ‖2 (18)

The Regularization parameter (λ) has to be set carefully.
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Introduction to Machine Learning

Linear Regression

The regularized loss function

To reduce overfitting, add an additional constrain that suppresses large
weight values θi :

L =
1

M

1

2
‖Xθ − y‖2 +

λ

2
‖θ‖2 (19)

To find the optimal weights we proceed as follows:

dL

dθ
= 0

d

dθ

(
1

M

1

2
(Xθ − y)T(Xθ − y) +

λ

2
θTθ

)
= 0

1

M
XT (Xθ − y) + λθ = 0

XTXθ − XTy + λMθ = 0

(XTX + λMI)θ − XTy = 0

θ = (XTX + λMI)−1XTy

(20)
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Introduction to Machine Learning

Linear Regression

The regularized loss function

To reduce overfitting, add an additional constrain that suppresses large
weight values θi :

L =
1

M

1

2
‖Xθ − y‖2 +

λ

2
‖θ‖2 (21)

To find the optimal weights we proceed as follows:

θ = (XTX + λMI)−1XTy (22)

Note that if the mean(y) = µ 6= 0, then the loss cannot become 0. The
minimum loss will then be |θ0|, which is only reached when all θi≥1 = 0.
Therefore, it is advisable to preform feature scaling in advance, simply
use y′ = y − 1

M

∑M
m=1 y

(m) in Equation (46). An alternative would be to
not use θ0 when computing ‖θ‖.
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Introduction to Machine Learning

Linear Regression

Algorithms for finding the least-squares solution

Xθ = y, X ∈ Cm×n (23)

Gradient decent (cheap, no guaranteed minimum)

LU decomposition, O( 2
3n

3)

Cholesky decomposition, O( 1
3n

3)

QR decomposition, O(2mn2 − 2
3n

3)

Singular value decomposition, O(2mn2 + 11n3)

...

Computation costs: Nick Higham, ”Functions of Matrices Theory and Computation”
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Introduction to Machine Learning

Linear Regression

’Exact’ solution: QR decomposition

If the number of samples is small, you can decompose the feature vector:

X = QR. (24)

These matrices have nice properties, Q = QT, QTQ = QQT = I,
Q2 = I, and R is an upper-triangular matrix. Hereafter you can solve the
normal equation up to machine precision.

Xθ = y

XTXθ = XTy

(QR)TQRθ = (QR)Ty

RTQTQRθ = RTQTy , QTQ = I

RTRθ = RTQTy

Rθ = QTy = ỹ

(25)

In the last line you can solve for θ by backwards-substitution.
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Introduction to Machine Learning

Logistic Regression

Classification

In classification the task is to predict classes.

Multi-class classification:

Labels: y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Binary classification:

Is an email spam or not?

Is a patient suffering from a condition or not?

Labels: y ∈ {0, 1}
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Introduction to Machine Learning

Logistic Regression

Hypothesis function

Linear regression: ŷ = hθ(x) = xTθ
Logistic regression: ŷ = hθ(x) = f (xTθ)
function f maps xTθ on the interval [0, 1]
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Introduction to Machine Learning

Logistic Regression

Hypothesis function

Logistic regression uses the sigmoid function (or Logistic function):

σ(z) =
1

1 + e−z
(26)
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Introduction to Machine Learning

Logistic Regression

Hypothesis function

Logistic regression uses the sigmoid function (or Logistic function):

σ(z) =
1

1 + e−z

Its derivative can be calculated using the sigmoid function:

dσ(z)

dz
= σ(z)(1− σ(z)) (27)
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Introduction to Machine Learning

Logistic Regression

Hypothesis function

hθ(z) = 1
1+e−z , with z = xTθ

Predict ”1” if hθ(x) ≥ 0.5 or:
xTθ ≥ 0
Predict ”0” if hθ(x) < 0.5 or:
xTθ < 0
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Introduction to Machine Learning

Logistic Regression

Decision boundary

The decision boundary: xTθ = 0

Assume 2 features plus the bias: xTθ = θ0x0 + θ1x1 + θ2x2 = 0
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Introduction to Machine Learning

Logistic Regression

Multiple samples

As in lin. reg, we represent the whole dataset as follows:

y =



y (0)

y (1)

..

y (m)

..

y (M−1)

 ,X =



(
x(0)
)T(

x(1)
)T

..(
x(m)

)T
..(

x(M−1)
)T


, (28)

so in the matrix X each row contains the features of one sample
from the dataset, and in the vector y contains the corresponding
label.
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Introduction to Machine Learning

Logistic Regression

Linear versus Logistic regression model

Linear regression:
hθ(X) = Xθ (29)

Logistic regression:

hθ(X) =
1

1 + e−Xθ
(30)
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Introduction to Machine Learning

Logistic Regression

The cross-entropy loss function (a.k.a. log loss )

The entropy (S = −kB
∑

i pi ln pi ) function for a binary
classification:

LCE = y (m) ln p
(m)
1 + y (m) ln p

(m)
0
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Introduction to Machine Learning

Logistic Regression

The cross-entropy loss function (a.k.a. log loss )

The entropy (S = −kB
∑

i pi ln pi ) function for a binary
classification:

LCE = y (m) ln p
(m)
1 + y (m) ln p

(m)
0

p1 + p0 = 1 =⇒

LCE = y (m) ln (p(m)) + (1− y (m)) ln (1− p(m))
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Introduction to Machine Learning

Logistic Regression

The cross-entropy loss function (a.k.a. log loss )

The entropy (S = −kB
∑

i pi ln pi ) function for a binary
classification:

LCE = y (m) ln p
(m)
1 + y (m) ln p

(m)
0

p1 + p0 = 1 =⇒

LCE = y (m) ln (p(m)) + (1− y (m)) ln (1− p(m))

p
(m)
1 = P(ym = 1|xm) = hθ(xm) =

1

1 + e−xTmθ
(31)
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Introduction to Machine Learning

Logistic Regression

The cross-entropy loss function (a.k.a. log loss )

The entropy (S = −kB
∑

i pi ln pi ) function for a binary
classification:

LCE = y (m) ln p
(m)
1 + y (m) ln p

(m)
0

p1 + p0 = 1 =⇒

LCE = y (m) ln (p(m)) + (1− y (m)) ln (1− p(m))

LCE = − 1

M

M−1∑
m=0

y (m) ln
[
hθ(x(m))

]
+
(

1− y (m)
)

ln
[
1− hθ(x(m))

]
(32)
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Introduction to Machine Learning

Logistic Regression

The cross-entropy loss function (a.k.a. log loss )

LCE = − 1

M

M−1∑
m=0

y (m) ln
[
hθ(x(m))

]
+
(

1− y (m)
)

ln
[
1− hθ(x(m))

]
Extending the above equation of the loss to the full data set in
matrix notation we have:

LCE = − 1

M

(
yT ln [σ (Xθ)] + (1− y)T ln [1− σ (Xθ)]

)
(33)
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Introduction to Machine Learning

Logistic Regression

Training of the logistic regression model

The loss function:
L = − 1

M

∑M−1
m=0 y (m) ln

[
hθ(x(m))

]
+
(
1− y (m)

)
ln
[
1− hθ(x(m))

]
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Introduction to Machine Learning

Logistic Regression

Training of the logistic regression model

Use gradient decent to optimise the model. The required
derivatives are computed by:

dL

dθ
=

1

M
XT (σ (Xθ)− y) (34)

, which is similar (dLdθ = 1
M XT (Xθ − y)) to the derivatives we

derived for linear regression, but note the important distinction.

Because of the non-linearity of the logistic model, a ’best’ θ vector
cannot be computed by a matrix inversion.
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Introduction to Machine Learning

Regression craftmanship

Technical improvements (craftsmanship)

Some things you should (always) do:

Feature scaling

Polynomial features

Kernels

Reguralisation
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Introduction to Machine Learning

Regression craftmanship

Feature scaling

σ(z) = 1
1+e−z The sigmoid

function varies most for input values around zero it is important
that, when using gradient descent, the values of the different
features are also in that range. If not, the gradient will be zero (or
at least very small) and the optimization will take a very long time!
Therefore it is common practice to scale the features.
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Introduction to Machine Learning

Regression craftmanship

Feature scaling

One approach is the following:

xsc =
x− µ
σstd

(35)

Where µ = 1
N+1

∑N
i=0 xi is the mean and σstd =

√
1

N+1 ‖x− µ‖
the standard deviation. RESULT: all features have a mean of zero
and a standard deviation of 1.
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Introduction to Machine Learning

Regression craftmanship

Not linearly separable problems

What if the data is not linearly separable?

A. Allow misclassifications
B. Include more features (e.g.

polynomial)
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Introduction to Machine Learning

Regression craftmanship

A. Allow misclassifications: Hinge loss function for soft
margin

Minimize:

L(w, b) =
1

2
‖w‖2 + C

1

M

M−1∑
m=0

max
(

0, 1− y (m)(wTx(m) + b)
)
(36)

For C →∞ we have the hard margin loss function.
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Introduction to Machine Learning

Regression craftmanship

Polynomial features

Data is not always linearly separable.
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Introduction to Machine Learning

Regression craftmanship

Polynomial features

For example use: x = [1, x2
1 , x

2
2 ]T

In general you can add many polynomial (or other) terms:

x = [1, x1, x2, x
2
1 , x1x2, x

2
2 , x

3
1 , · · · ]T
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Introduction to Machine Learning

Regression craftmanship

B. Include more polynomial features

Let’s say we have a feature vector:

x =

[
x1

x2

]
(37)

We can map this into a different feature space by e.g. computing
all polynomial terms of degree 2 using a function φ(x):

φ(x) =

 x2
1√

2x1x2

x2
2

 (38)

Classification: xnew → sgn(wTφ(xnew ) + b)

However, this becomes computational expensive when the number
of features N becomes very large.
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Introduction to Machine Learning

Regression craftmanship

B. Include more polynomial features

To solve this constrained optimization problem, we introduce Lagrange
multipliers an:

L(w, b, a) =
1

2
‖w‖2 +

M∑
m=1

am
(
1− y (m)(wTφ(x(m)) + b)

)
(39)

Which leads to the dual representation (see Bishop Ch.7). minimize:

L̃(a) =
M∑

m=1

am −
1

2

M∑
m=1

M∑
n=1

amany
(m)y (n)K(φ(x(m)),φ(x(n))) (40)

subject to the constraints:

am ≥ 0,
M∑

m=1

amy
(m) = 0, m = 1, . . . ,M, (41)

and with kernel function: K(φ(x(n)),φ(x(m))) = x(n)T · x(m)
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Introduction to Machine Learning

Regression craftmanship

B. Include more polynomial features

Which leads to the dual representation (see Bishop Ch.7).
minimize:

L̃(a) =
M∑

m=1

am−
1

2

M∑
m=1

M∑
n=1

amany
(m)y (n)K(φ(x(m)),φ(x(n))) (42)

subject to the constraints:

am ≥ 0,
M∑

m=1

amy
(m) = 0, m = 1, . . . ,M, (43)

Classification: xnew → sgn
(∑M

m=1 amy
(m)K

(
xnew , x(m)

)
+ b
)

Sparsification: am = 0 except for the support vectors.
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Introduction to Machine Learning

Regression craftmanship

B. Include more polynomial features

Advantage of the dual representation is that we went from an
optimization problem involving N variables to one with M variables
AND we can use kernels!

φ(x(1)) · φ(x(2)) =

 (x
(1)
1 )2

√
2x

(1)
1 x

(1)
2

(x
(1)
2 )2

 ·
 (x

(2)
1 )2

√
2x

(2)
1 x

(2)
2

(x
(2)
2 )2


= (x

(1)
1 x

(2)
1 )2 + 2(x

(1)
1 x

(2)
1 )(x

(1)
2 x

(2)
2 ) + (x

(1)
2 x

(2)
2 )2

= (x
(1)
1 x

(2)
1 + x

(1)
2 x

(2)
2 )2

= (x(1) · x(2))2

(44)
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Introduction to Machine Learning

Regression craftmanship

B. Kernel: Include more polynomial features at low cost

(x(1) · x(2))4 =

(x
(1)
1 x

(2)
1 + x

(1)
2 x

(2)
2 )4 =(

x
(1)
1 x

(2)
1 + x

(1)
2 x

(2)
2

)2 (
x

(1)
1 x

(2)
1 + x

(1)
2 x

(2)
2

)2
=(

(x
(1)
1 x

(2)
1 )2 + 2(x

(1)
1 x

(2)
1 )(x

(1)
2 x

(2)
2 ) + (x

(1)
2 x

(2)
2 )2

) (
(x

(1)
1 x

(2)
1 )2 + 2(x

(1)
1 x

(2)
1 )(x

(1)
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And what to think about (x(1) · x(2))k for k →∞?
’kernel trick ’
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Regression craftmanship

B. Kernel: Include more polynomial features at low cost

And what to think about (x(1) · x(2))k for k →∞?
The widely used Gaussian kernel is an example of a distance
(d = ‖dij‖ =

∥∥x(i) − x(j)
∥∥) based kernel that can be formulated as

a polynomial kernel of infinite degree:

K
(

x(i), x(j)
)

= exp
(
−γ ‖dij‖2

)
=

exp
(
−γ dT

ij · dij

)
:=

∞∑
k=0

(−γ dT
ij · dij)

k

k!
. (45)

You can interpret the kernel as a similarity measure. Its
maximum value (1) is obtained for the case i = j , that is the two
feature vectors are identical.
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Regression craftmanship

B. Gaussian Kernel

K
(

x(i), x(j)
)

= exp
(
−γ dT

ij · dij

)
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Regression craftmanship

B. Other Kernels
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Regression craftmanship

Regularisation

The problem of over-fitting

To reduce overfitting, add an additional constrain that suppresses
large weight values θi . Example Ridge Regression (or Tikhonov
regularization):

L =
1

M

1

2
‖Xθ − y‖2 +

λ

2
‖θ‖2 (46)
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Neural Networks

Introduction

What is a Neural Network (NN)?

Figure: Glosser.ca, CC BY-SA 3.0 via Wikimedia Commons
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Neurons
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Neural Network (NN)
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Neural Networks

Define the NN

The layer index is denoted with l . Our
NN has an input layer (l = 0), an
output layer (l = L) and hidden layers
(1 ≤ l ≤ L− 1).
For each layer l we have:

A number of nodes: nl

An output (column) vector:
al ∈ Rnl×1

A weight matrix: Wl ∈ Rnl×nl−1

A bias (column) vector: bl ∈ Rnl×1

An activation function: σl
Figure: Glosser.ca, CC BY-SA 3.0 via
Wikimedia Commons
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Neural Networks

Forward Pass, ie. use the (trained) NN to make a prediction

For the input layer:
a0 = x (47)
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Neural Networks

Forward Pass, ie. use the (trained) NN to make a prediction

For the input layer:
a0 = x (48)

For the hidden layer(s) (1 ≤ l ≤ L):

zl = Wlal−1 + bl

al = σl
(

zl
) (49)
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Neural Networks

Forward Pass, ie. use the (trained) NN to make a prediction

For the input layer:
a0 = x (50)

For the hidden layer(s) (1 ≤ l ≤ L):

zl = Wlal−1 + bl

al = σl
(

zl
) (51)

The above equations can also be written in component form as:

z li =

nl−1∑
j=1

W l
ija

l−1
j + bli

ali = σl
(
z li

) (52)

Note, no element-independent mapping for the Softmax, ie.
al = σl (z).M. Bokdam, University of Twente 65 / 81
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Neural Networks

Possible activation functions σ(z)

There are a few commonly used activation functions:

Sigmoid : σi (z) =
1

1 + exp(−zi )

ReLu : σi (z) = max(0, zi )

Tanh : σi (z) = tanh(zi )

Softmax : σi (z) =
exp(zi )∑nL
i=1 exp(zi )

In the Softmax, you might recognise similarity with the Boltzmann
distribution: pi = e−εi/kBT/

∑
i e
−εi/kBT
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Neural Networks

Train the NN: Loss function

To train the NN we need a measure of how well the current NN
performs. Two commonly applied loss functions that appear
somewhat naturally are the:

Quadratic (least-squares) loss function.

LQ

(
W1,W2, ..WL,b1,b2, ..bL

)
=

1

M

M∑
m=1

∥∥∥aL(x(m))− y(m)
∥∥∥2

The cross-entropy loss function (requires probabilities for label

and prediction).

LCE

(
W1,W2, ..WL,b1,b2, ..bL

)
= − 1

M

M∑
m=1

y(m) · ln aL(x(m))
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Neural Networks

One-hot (probability) representation

Example: Recognition of handwritten numbers 1,2,3,4:
label number 1 = [1 0 0 0], state =0
label number 2 = [0 1 0 0], state =1
label number 3 = [0 0 1 0], state =2
label number 4 = [0 0 0 1], state =3
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Neural Networks

One-hot (probability) representation

Example: Recognition of handwritten numbers 1,2,3,4:
label number 4 = [0 0 0 1]

test output network z =[a b c d]

→ Softmax : σi (z) = exp(zi )∑nL
i=1 exp(zi )

=[0.15 0.01 0.04 0.80]

prediction = arg.max([0.15 0.01 0.04 0.80]) = state 3→ number 4
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Neural Networks

One-hot (probability) representation

Example: Recognition of handwritten numbers 1,2,3,4:
label number 4 = [0 0 0 1]

prediction = arg.max([0.15 0.01 0.04 0.80]) = state 3→ number 4

LCE = − 1

M

M∑
m=1

y(m) · ln aL(x(m))

LCE = −[0 0 0 1] · ln([0.15 0.01 0.04 0.80])
LCE = −[0 0 0 1] · [−1.9 − 4.6 − 3.2 − 0.22])
LCE = 0 ∗ 1.9 + 0 ∗ 4.6 + 0 ∗ 3.2 + 1 ∗ 0.22 = 0.22
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Neural Networks

Train the NN: Gradient Decent

We want to minimize the loss function. For both LQ and LCE the
perfect fit will result in L = 0.
In the stochastic gradient approach all parameters (weights and
biases) need to be updated:

W l
ij →W l

ij − η
∑
batch

∂L

∂W l
ij

bli → bli − η
∑
batch

∂L

∂bli

Where η is the learning rate. The gradients can be computed by
back propagation.
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Neural Networks

Train the NN: Back propagation

A great advantage, combining linearity of the NN with the chain
rule

In case of a 1-layer LQ NN: a = σ(z) = σ(Wx + b)
∂L
∂W = ∂L

∂a
∂a
∂z

∂z
∂W = (a− y)(σ′(z))(x).

In a general L layer NN:

∂L

∂zL
=


dσL

dzL
◦
(
aL − y

)
( LQ and all element-independent activation functions)

aL − y ( LCE and Softmax)

(1)
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Neural Networks

Train the NN: Back propagation

A great advantage, combining linearity of the NN with the chain
rule.

∂L

∂zL
=


dσL

dzL
◦
(
aL − y

)
( LQ and all element-independent activation functions)

aL − y ( LCE and Softmax)

(1)

∂L

∂zl
=

dσl

dzl
◦ (Wl+1)T

∂L

∂zl+1
for 1 ≤ l ≤ L− 1 (2)
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Neural Networks

Train the NN: Back propagation

A great advantage, combining linearity of the NN with the chain
rule.

∂L

∂zL
=


dσL

dzL
◦
(
aL − y

)
( LQ and all element-independent activation functions)

aL − y ( LCE and Softmax)

(1)

∂L

∂zl
=

dσl

dzl
◦ (Wl+1)T

∂L

∂zl+1
for 1 ≤ l ≤ L− 1 (2)

∂L

∂Wl
=
∂L

∂zl
(al−1)T for 1 ≤ l ≤ L (3)
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Train the NN: Back propagation

A great advantage, combining linearity of the NN with the chain
rule.

∂L

∂zL
=


dσL

dzL
◦
(
aL − y

)
( LQ and all element-independent activation functions)

aL − y ( LCE and Softmax)

(1)

∂L

∂zl
=

dσl

dzl
◦ (Wl+1)T

∂L

∂zl+1
for 1 ≤ l ≤ L− 1 (2)

∂L

∂Wl
=
∂L

∂zl
(al−1)T for 1 ≤ l ≤ L (3)

∂L

∂bl
=
∂L

∂zl
for 1 ≤ l ≤ L (4)
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Neural Networks

Train the NN: Back propagation

Figure: Glosser.ca, CC BY-SA 3.0 via
Wikimedia Commons

∂L

∂zL
=


dσL

dzL
◦
(
aL − y

)
( LQ and all element-independent activation functions)

aL − y ( LCE and Softmax)
(1)

∂L

∂zl
=

dσl

dzl
◦ (Wl+1)T

∂L

∂zl+1
for 1 ≤ l ≤ L− 1

(2)

∂L

∂Wl
=
∂L

∂zl
(al−1)T for 1 ≤ l ≤ L

(3)

∂L

∂bl
=
∂L

∂zl
for 1 ≤ l ≤ L

(4)
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Neural Networks

NN training strategy

Split your valuable data up in three sets:

1 A training set. (Large set)

2 A validation set. (Small set)

3 A test set. (Small set)

Again, there is no golden rule, but try 60/20/20 % to start off.
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Neural Networks

NN training strategy

Now we can start training:

1 create batches. Divide the data in a batches of equal size.

2 epoch. For each batch do:

1 forward pass. Calculate the output of the NN (aL) for each data

point in the batch.

2 backward pass. Compute the derivatives ∂L/∂Wl and ∂L/∂bl for

all layers and sum over all data points in the batch.

3 update weights. Compute the new weights and biases.

3 compute loss. Compute the loss of the training and validation set.

4 Repeat. Repeat steps 2 through 4 until convergence.

5 test. Evaluate the performance of the trained NN by computing the loss

of the the test set.
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Optional: build your own NN classifier

Python Notebook (option 1)

Notebook: neural network part2 student.ipynb

The MNIST dataset: 70000 images (28× 28) of handwritten digits.

Build a NN that correctly classifies the images (> 95%).
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Optional: build your own NN classifier

Python Notebook(option 2)

Notebook: neural network part2 student.ipynb

The Fashion-MNIST dataset: 70000 images (28× 28) of
handwritten digits.

Build a NN that correctly classifies the images (> 95%).
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Optional: build your own NN classifier

Points of attention

Carefully check definition of in- and output shapes and of
weights matrices and bias vectors etc.

Train the network using gradient descent using batches (see
also notebook)

Normalization/scaling of the data is very important
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