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Recap: where we started ‘ (1)

Solve the Schrodinger equation for the electrons in the ionic field

1 5 1 1
H—zzi:v,- +ZVext(r:)+2§’ri_rj|

Solve for the wave function of the ‘ interacting electron system ‘

Wave function m where x = (r,0) and 0 = £1




Recap: basic concepts ‘

Possible “simple” approach
— Start from one-particle {1;(x)}

— Build non-interacting many-body basis of determinants

Example: ’ Configuration interaction ‘

\UCI(Xl,...,XN) = Zk Cka

WCI(XL . 7X/\/) =

(][]
FddAl I
e ANl
Lt I
e el

Build solution as expansion over determinants



Recap: basic concepts (3)

Advantage of a linear expansion over determinants?

Find optimal coefficients by solving a generalized secular problem

K

K K
k k k
ey = ZCiDi - Z(DI|H|DJ>CJ( ) — E((JI) Z<D,|DJ>CJ( )
i=1 J=1 =t

If Gaussian basis — All integrals computed analytically !

but slow convergence ...

What about a wave function depending on 7 Use Monte Carlo



Recap: Variational Monte Carlo‘ (1)

We compute the expectation value of the Hamiltonian H as

b, viY)
VIv)
HU(R) |V(R)?

V(R) [dR[W(R)P?

- /dR EL(R) P(R)
= (EL(R))p

= dR

Obtain M samples distributed as P(R) and estimate Ey as

_ 1 M
Ey = M;EL(R,-)



Recap: Variational Monte Carlo‘ (2)

The energy and variance can be rewritten as

_ )
_ V(- EvPI) _
ot = ey~ (ELR) — Ev))e

and estimated as averages

ErL(R))

M
<
I
N
Iz

(EL(R;) — Ev)?

i
I
N

Il
—

1

OE

VM

The statistical Monte Carlo error goes as err(Ey) ~

Note: For other operators, substitute H with O



Recap: Variational Monte Carlo‘ (3)

To obtain M samples distributed as P(R), generate a Markov chain

R

R’/ M R" M . %\

using M(R¢|R;) probability for transition R; — R¢

M M

R

If M(Rf|Ri) > 0 and /deM(Rf’Rj) =1
and if M satisfies stationarity condition:
/dRi M(R¢|R;) P(R;) = P(R¢) V R¢

= Any initial distribution will evolve to P



Recap: Variational Monte Carlo‘ (4)

In practice, we impose ’detailed baIance‘ condition

[M(Ri[Ri) P(Ri) = M(Ri[Ry) P C D

We write M as proposal T x acceptance A

| M(R¢|R;) = A(R¢|R;) T(R¢[R;)

- T(Ri|R¢) P(Ry)
and choose | A(R¢|R;) = mm{l’ T(Rf’Rfi) P(Rf)}

so that detailed balance condition is satisfied — P(R) is sampled



’Recap: Variational Monte Carlo

Some notes about Metropolis algorithm
JdR[W(R)[?

— For complex W we do not know the normalization!

does not have to be normalized

b) Data generated in a Monte Carlo run are correlated

— Choose a good T !

c) If ¥ — eigenfunction, E;(R) does not fluctuate

— Fewer Monte Carlo steps needed to estimate Ey



Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Oyme

Energy (Hartree)

o 500 1000 1500 2000

Evnvic = (EL(R))p = —36.542 + 0.001 Hartree (40x20000 steps)

ovmc = ((EL(R) — Evac)?)p = 0.90 Hartree



Variational Monte Carlo — Freedom in choice of W

Monte Carlo integration allows the use of complex and accurate W

= More representation of W than in quantum chemistry
= coDgr +c1D1+ Dy + ... of determinants



’ Jastrow-Slater wave function ‘

Commonly employed compact Jastrow-Slater wave functions

V(ry,...,ry) = J(r1, ...,y Zc, i(r1, ... rN)

Z

(]
dddtl
e A RSN
Lt
e e

—— Jastrow correlation factor

— Explicit dependence on electron-electron distances

Z ¢; D;i | — Determinants of single-particle orbitals

- and not millions of determinants



Divergences in the potential

At interparticle coalescence points, the potential diverges as

Z .
——  for the electron-nucleus potential

liew

1 .
—  for the electron-electron potential
Tij

v 1« V2V —
Local energy H—:—iz “— + V| must be

v v

= Kinetic energy must have opposite divergence to the potential V



Divergence in potential and behavior of the local energy

Consider two particles of masses m;, m; and charges g, q;

Assume r;; — 0 while all other particles are well separated

. . . HVY . . .
’ Keep only diverging terms‘ in v for particles i and |

and go to ‘ relative coordinates‘ closetor=r; =0

1 Vv 11 /0w 20V
C2uy W W) ~ 2u v <8r2+r8 )+V()
11y
~ _/7,1?34_]}“) + ...

where pj; = m; m;j/(m; + m;) and we assumed W(r = r;j = 0) # 0



Divergence in potential and cusp conditions

Diverging terms in the local energy

11V 11V iqj
_7,7_|_V(r):_777-|-ﬂ = finite
pijr W pijrv r

= W must satisfy Kato's cusp conditions:

~

ov
6r,-j

= wiiqi q;V(rj = 0)

rij=0

where W is a spherical average

Note: We assumed W(r;j =0) #0



Cusp conditions: example

The condition for the local energy to be finite at r =0 is

w/
v = Kijqi qj
\U/
e Electron-nucleus: p=1,q9;=1,q=-2 = | =—-7
v r=0
1 g
e Electron-electron: p=_-,¢9;=1,¢qg;=1 = | — =1/2
2 v r=0




Cusp conditions and QMC wave functions

> Electron-electron cusps imposed through the Jastrow factor
Example: Simple Jastrow factor
Fij
i) = € b
s0-Tleofe 5}
1<J

1 1
with bt = 5 o bt = byt = .

Imposes cusp conditions
+
keeps electrons apart

rij

> Electron-nucleus cusps imposed through the determinantal part



‘ The effect of the Jastrow factor‘

Pair correlation function for 1| electrons in the (110) plane of Si
gry(r,r') with one electron is at the bond center

Hood et al. Phys. Rev.

Lett. 78, 3350 (1997)

o>



Dynamic and static correlation

W = Jastrow x Determinants — Two types of correlation

> Dynamic correlation

Described by Jastrow factor
Due to inter-electron repulsion

Always present

> Static correlation

Described by a linear combination of determinants
Due to near-degeneracy of occupied and unoccupied orbitals

Not always present



’ Static correlation

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration

Additional important configuration |1s22p?

152252 x J(rj) — ERic =61%

152252 @ 1s22p?  x J(rj) — E&RYe = 93%

where E°" = E .t — Enrp



Why should Wqne = J D work?

Full wave-function — Factorized wave-function
v To
N N
Full Hamiltonian —_— Effective Hamiltonian
H Heff
HT
HVY = EV — HIOP=EJd — 7<D: Eo

Heg® = Eb

Heg weaker Hamiltonian than H

= ® = non-interacting wave function D

= Quantum Monte Carlo wave function ¥ = 7D



Optimizing the wave function in QI\/IC‘

Optimize by energy minimization — Tricky?

Statistical error: Both a blessing and a curse!

V(a1 — Energy and its derivatives wrt parameters {cy}

- HV(R) [V(R)]®
foo= JRYR) TaRuRE ~ v
A HOW OV
OkEv < v E, + v _2EV\U>W2
OV
. 2<<<U(EL - EV)>W2

The last expression is obtained using Hermiticity of H



’ Use expressions with smaller quctuations‘

Two mathematically equivalent expressions of the energy gradient

B Oklll H(?k\U 8klli - akw
akE\/—< v Er, + v 2Ey v >\U2— 2< v (EL E\/)>

w2

Why using the last expression?

Lower fluctuations| — 0 as ¥ — WY

Play similar tricks with the Hessian or its approximations

— Toolbox of optimization approaches

Umrigar, Toulouse, Sorella, Filippi, Scemama (2005-2007)



Important developments — Efficient computation of derivatives!

Computing V, E;, OV, OE; for many parameters + determinants

Example: Polyenes C,H,1> — from C4Hg to

CF)Uvmc+derivs/CPUvmc CPuvmc+forces/CPUvmc
5 . . : : 35 . . .
g hyhybyiyioiyiviyiviviobyivhedyiiyyigly Lty
3.0
4 L
3
2
1.0 CaHe —@—
1 1 CgHio —o—
i imi i | CigHig —o— imi i 1
wave function optimization 05 o geometry optimization
0 . . - - 0 CeoHes2 . .
0 x10*  2x10*  3x10*  ax10* | 5x104| 1 10 100 1000 10000
number of parameters number of determinants

-+ Optimization tools — QMC “internally consistent”

Filippi, Assaraf, Moroni, JCP (2016); JCTC (2017)



Beyond VMC?

Removing or reducing wave function bias?

= Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function W

-0.1070 T T

‘ \ \ \
3D electron gas at a density r =10

VMC JS.
@

-0.1075
VMC JS+3B..-~
e

-0.1080| -
VMC JS+BE-"

DMC JS ,,—"'..VMC JS+3B+BF
-0.10858- -

Energy (Ry)

L
-0.1090

PDMC JS+3B+BF
L 1 L | 1
0 0.02 0.04 0.06 0.08
. 2
Variance ( x r;‘ (Ry/electron)™)

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



| Why going beyond VMC?|

What goes in, comes out! Can we remove wave function bias?

’ Projector (diffusion) Monte Carlo method

> Construct an operator which inverts spectrum of H

‘Diffusion Monte Carlo‘ — e T(H—Ewer)

> Use it to stochastically project the ground state of H



Diffusion Monte Carlo] (1)

Consider |initial guess [W(9) | (e.g. 7D we used in VMC)

Repeatedly apply projection operator

(W = = m(H=Erer) |y (n=1)y

To understand what one obtains, perform a “thought experiment”

and expand W(©) on the eigenstates W; with energies E; of H

Wy = e (H=Bret) |y (0)) — o= n7(H—Frer) Z W) (w;|w©)

1

— Z e_nT(H_Eref)|\Ui> <\|J’|\U(O)>

— Ze_nT(Ei_Eref)|wi> <\U’|\U(O)>

1

continues on next page



| Diffusion Monte Carlo | (2)

Continuing from previous page

‘\U(n)> _ e—nT(E()—Eref) Z e—nT(E,-—EO)|wi> (W,|\U(O)>
= e (Eo—Erer) (|\|;0> (Wo[WwO)y 4 = (Er=Fo) |y ) (wy w0y

and obtain in the limit of n — oo

lim (W) = (W) (Wo|w(©)) e (Eo—Erer)

n—o0

If we choose Eiot ~ Eg, we obtain | lim [W(M) = |wg)
n—0o0




How do we perform the projection?‘ (1)

‘\u(n)> - efT(HfEref)‘\u(nfl)>
Rewrite projection equation in real-space representation
= (R'|W(M) = (R/|e""(H=Eret) jy(n=1)y

(RIW)

/ dR (R'|e "H=Eet) | R) (R|W (1))
which we rewrite as

V(R t+7)= /dR G(R',R,7)V(R,t)

where G(R',R,7) = (R’\e*T(H*Eref)]R)



How do we perform the projection?‘ (2)

Projection equation in integral form

V(R 4 7) = /dR G(R,R, 7)V(R, t)

where G(R',R,7) = (R'|e "(H~Eet)|R)

> Can we sample the wave function?
For the moment, assume we are dealing with , soV >0

> Can we interpret G(R’, R, 7) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



’VMC and DMC as power methods‘

L __NR)E
Distribution function is given | P(R) = [dR|W(R)2

Construct M | which satisfies stationarity condition so that

lim /dR,7 ---dRiM(R,R;) - - - M(R3,R2)M(R2, R1) Pinit(R1) = P(R)

n—oo

Opposite procedure!
The matrix M is given — |M = G = (R'|e ("~ E=)|R)
We do not know !

lim /dR,,---deG(R,R,,)---G(R3,R2)G(R2,Rl)Pimt(Rl) = Vy(R)

n—o0

In either case, we want to find the dominant eigenvector of M



’What we know about the Green's function ‘

\.U(t) — e_t(H_Eref)w(O)

V(R, t) satisfies the imaginary-time Schrodinger equation

_OV(R, 1)

(H - Eref)W(Rv t) = ot

V(R,t) = /dRO G(R, Ry, )V (Ry)

G(R',R, t) satisfies the imaginary-time Schrodinger equation

9G(R, Ro, t)

(H — Ewef)G(R,Ro, t) = — T

with G(R',R, t) = (R/|e"t("=E<0)|R) and G(R’,R,0) = (R’ —R)



’Can we interpret G(R’,R, 7) as a transition probability?‘ (1)

H=T
Imaginary-time Schrodinger equation is a diffusion equation

8G(R, Ro7 t')

1 2
~IV2G(R,Ry, t) = —
2V G( 3 07t) ot

The Green's function is given by a Gaussian

G(R,R,7) = (277) 3N/2 exp [_(R’2—TR)2]

Positive and can be sampled‘




’Can we interpret G(R’,R, T) as a transition probability?‘ (2)

H=V

8G(R, Ro, t)

(V(R) — Eref)G(R, Ro, t) = — ot ,

The Green's function is given by

G(R/? R’T) = &xp [_7- (V(R) - Eref)] 6(R - Rl)?

but does not preserve the normalization

It is a factor by which we multiply the distribution W(R, t)



H =T +V and a combination of diffusion and branching‘

Trotter's theorem — | eA1B)T — ¢ATeBT L O(72)

(R'le™"|Ro) ~ (R'le”""e""|Ro)
- /dR”(R’e_TTR”>(R”|e_VT|R0>

_ <R/|ef7—T|RO>67V(R0)T

The Green's function in the ‘short—time approximation ‘ to O(72) is

I 2
G(R',R, 7) = (277) V2 exp [—("2"’)] exp [—7 (V(R) — Eur)]



H =T +V and a combination of diffusion and branching‘

Green's function in the ‘short—time approximation ‘ to O(7?)

/

2
G(R,R,7) ~ (2m7)3N/2 exp [—(RR)] exp [—7 (V(R) — Epef)]

2T

— Diffusion + reweight factor leading to survival/death/cloning

— DMC results must be extrapolated at short time-steps (7 — 0)



Diffusion and branching in a harmonic potential

V() \\J

VA G0RN

\

W) T

Walkers proliferate/die where potential is lower/higher than Ef




Time-step extrapolation

Example: Energy of Liy versus time-step 7

—14.988

14980

@

[ih]

o

=1

t

£

~—-14.902

>

<
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<

c

w

—14.994 |
PO Simple DMC, Emx (0, 1, 3/2 2, 5/2) AN
+ oo Simple DMC, Egr (O, 1 2 3/2 2, 5/2)
o Improved OMC,” Emie (0. ) 3
o ——= Improved DMC g (0, 1,72)
—14.996
0.00 0.05 0.10 0.15 0.20 0.25

Time Step T (Hartree™')

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1.

Sample W(O)(R) with the Metropolis algorithm

Generate My walkers Ry, ..., Ry, (zeroth generation)

Diffuse each walker as|R’ = R + ¢

where ¢ is sampled from g(¢) = (277) 7 3V/2 exp (—52/27')

. For each walker, compute the factor

|p=exp[~7(V(R) — Ewer)]|

p is the probability to survive/proliferate/die

. Adjust E,.t so that population fluctuates around target My

After many iterations, walkers distributed as Wy(R)



Problems with simple algorithm ‘

The simple algorithm is | inefficient and unstable

> Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction — Exploding population

> Branching factor grows with system size



Importance sampling‘

Start from integral equation

V(R t+7)= /dR G(R',R,7)V(R, 1)

Multiply each side by trial Wy and define | 7(R, t) = Wr(R)V(R, t) |

(R, t+7) = /dR G(R,R,7)n(R, 1)

where the importance sampled Green's function is

G(R',R,7) = Wp(R')(R'|e "H=Ee)|R) /W (R)

We obtain | lim (R) = Wp(R)Wo(R)

n—oo




Importance sampled Green's function ‘

The importance sampled G (R, Ro, 7) satisfies

1 .. . oG
V26 + V- [GV(R)] + [EL(R) — Eref] G = ——~
2 or
: : ~ VVr(R) _ HV(R)
with quantum velocity V(R) = V1(R) and Ep(R) = Vr(R)

We now have in addition to diffusion and branching terms

Trotter's theorem =- Consider them separately for small enough 7



’The drift-diffusion-branching Green's function ‘

Drift-diffusion-branching short-time Green's function is

2T
x exp{—7 (Er(R) — Ewer)}

E(R',R,7) = (277) " 3N/2 exp {_(R/ —-R-— TV(R))2:| .

What is new in the drift-diffusion-branching expression?
> V(R) pushes walkers where W is large
> Er(R) is better behaved than the potential V(R)
Cusp conditions = No divergences when particles approach

As Ut — W, E;, — Ey and branching factor is smaller



Basic DMC algorithm with importance sampling‘

1. Sample initial walkers from |Wr(R)|?

2. Drift and diffuse the walkers as R" = R+ 7V(R) + ¢
where ¢ is sampled from g(¢) = (2r7) 3V 2 exp (—&2/27)

3. Branching step as in the simple algorithm but with the factor

p = exp {—7[(EL(R) + EL(R'))/2 — Eref]}

4. Adjust the trial energy to keep the population stable

— After many iterations, walkers distributed as W (R)Wo(R)



Electrons are fermions!

We assumed that Wy > 0 and that we are dealing with bosons

Fermions — W is antisymmetric and changes sign!

Fermion Sign Problem ‘

All fermion QMC methods suffer from sign problems
These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



| The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function W(x, 7 = 0)

Rewrite W(x, 7 = 0) as W(x1=0)
Vv, v
where
1
Vo= (v v)

1 W(x1=0) W(x1=0)
Vo = S(vI-v) |




Particle in a box and the fermionic problem

The imaginary-time Schrodinger equation

ov

is linear, so solving it with the initial condition
VU(x,t=0) = VWV (x,t=0)—WV_(x,t=0)

is equivalent to solving

v oW _
HY, = —86; and MV =——=

separately and subtracting one solution from the other



Particle in a box and the fermionic problem

> Since E§ < E§, both W and W_ evolve to ¥}

\Ui—>

> Antisymmetric component exponentially harder to extract

Wy —v_| e 5t
XX
Vv | C Ee

as t — o0



The Fixed-Node Approximation ‘

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable

barrier \




impenetrable

barrier \

Fixed-node algorithm in simple DMC‘

How do we impose this additional boundary condition?

> Annihilate walkers that bump into barrier (and into walls)

— This step enforces boundary conditions

— In each nodal pocket, evolution to ground state in pocket

Numerically algorithm (no exponentially growing noise)

— Solution is exact if nodes are exact

— Best solution consistent with the assumed nodes



’ For many electrons, what are the nodes? A complex beast‘

Many-electron wave function W(R) = W(ry,ra, ..., ry)

— surface where W = 0 and across which W changes sign

A 2D slice through the 321-dimensional nodal surface
of a gas of 161 spin-up electrons.



Some known properties of the nodes‘

Physical space has d (=1,2,3) dimensions
» Node is (dN — 1)-dimensional surface in dN dimensions

constraint (W = 0) = | (dN — 1) -dimensional node

» Equations as r; = r; define (dN — d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

» If d =1, coincidence points x; = x; define the ground-state
node completely — One-dim problems are easy to simulate



Nodal pockets can be divided up into cIasses‘

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Ry

Map this subvolume over rest of the space with permutations
X

\ ¥
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Nodal pockets can be divided up into cIasses|
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The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class
X

o>
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The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class

X




Use the nodes of trial W — Fixed-node approximation

Use the nodes of the best available trial W wave function

W(R)=0

<

Find best solution with same nodes as trial wave function W

Fixed-node solution exact if the nodes of trial W are exact

Easy to implement in DMC with importance sampling: m > 0



Fixed-node solution and importance-sampling DMC‘

Given trial W (R), evolve ’W(R, t) = Vp(R)V(R, t) ‘ as

_%Vzﬁ +V- [7r V(R)] + [EL(R) - Eref] ™= _g:-
with V(R) = ST (I(g) and Er(R) = TJTT(,(-S)

Fixed-node approximation — |7(R,t) >0



’ Have we solved all our problems?

Results depend on the nodes of the trail wave function W

’ Diffusion Monte Carlo as a black-box approach?‘

enmap for atomization energy of the G1 set

DMC CCSD(T)/aug-cc-pVQZ
HF orb Optimized orb CAS
EMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on W, we can do rather well



Diffusion Monte Carlo as a black-box approach?‘

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP /aug-cc-PVTZ orbitals versus CCSD(T)/CBS

' ‘ Apniap = 0.058 kecal/mol ‘

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on W, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy for different choices of wave function

Vertical excitation energy (eV)

5.3

52 r

51 r

5.0

4.9

4.8

* VMC —e—
DMC —e&—
)
¢
[0]
@ o)
[0]
exFCl
| ccs . _ _ % 0.0
CAS CIPSI

HF/HL CIS (6,5) (6,10) (14,13) 1k 6k 11k 18k

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on W pays off!



| DMC and solid state calculations |

Example: Structural/magnetic properties of superconducting FeSe
— Accurate lattice constants, bulk moduli, and band dispersion

— Resolving relative energetics of different magnetic ordering

' \/\/‘(\/\'\
@

X /\,
gRe=9n

)
¢

e
G\ N

1
B
° |
<
9

Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)



Alternatives to fixed-node DMC: Releasing the nodes‘

First do a fixed-node DMC simulation
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Then release the nodes




Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes

» Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

> Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC‘ (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

— Determinantal QMC by Zhang and Krakauer
Appears less plagued by fixed phase than DMC by FN

— Full-Cl QMC by Alavi
Start from Wep =D . ¢iD;

8\IJ 86,'
HY = —E — H,'J'Cj = —E



DMC in summary

The fixed-node DMC method is (in general)
> Easy to do

» Stable

» Accurate enough for many applications in quantum chemistry

... especially in large systems

» Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states
» In the general landscape, we are not doing too badly

> Sensitivity to wave function but relatively robust

— basis, choice of CAS (minimal CAS), truncation on CSFs



’ Beauty of quantum Monte Carlo — Highly parallelizable

V(ry,...,ry) — Ensemble of walkers diffusing in 3N dimensions

VMC — Independent walkers = Trival parallelization

DMC — Nearly independent walkers = Few communications

Easily take great advantage of parallel supercomputers!
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Going to larger systems pose new problems

Many-body methods

1. CCSD(T)
41.0 Coupled Cluster Theory
2. DMC
Diffusion Monte-Carlo
31.1p= —
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To conclude: ongoing research in QI\/IC‘

» Search for different forms of trial wave function

Neural network architecture — W of multi-electron orbitals
“F

Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

» Push optimization techniques to larger systems
» More work on transition metals

» Alternatives to fixed-node diffusion Monte Carlo



’Other applications of quantum Monte Carlo methods‘

> ’ Electronic structure caIcuIations‘

Strongly correlated systems (Hubbard, t-J, ...)

Quantum spin systems (Ising, Heisenberg, XY, ...)

>
>
» Liquid-solid helium, liquid-solid interface, droplets
» Atomic clusters

>

Nuclear structure

» Lattice gauge theory

Both zero (ground state) and finite temperature



’ Hands-on tutorial to learn real-space VMC and DMC

https://trex-coe.github.io/gmc-Ittc-2023 /index.html

’Some references on VMC and DI\/IC‘

» W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73,
33-83 (2001).

» A. Luchow, Quantum Monte Carlo methods. Wiley Interdiscip.
Rev.: Comput. Mol. Sci. 1, 388-402 (2011).

» B. M. Austin, D. Y. Zubarev, W. A. Lester, Quantum Monte Carlo
and Related Approaches. Chem. Rev. 112, 263-288 (2012).

» J. Toulouse, R. Assaraf, and C. J. Umrigar, Introduction to the
Variational and Diffusion Monte Carlo Methods, Adv. Quantum
Chem. 73, 285-314 (2016).

» J. Feldt and C. Filippi, Excited-state calculations with quantum
Monte Carlo in "Excited states: Methods for quantum chemistry
and dynamics”, edited by R. Lindh and L. Gonzalez (Wiley, 2020).

» F. Becca and S. Sorella, Quantum Monte Carlo Approaches for
Correlated Systems (Cambridge University Press, 2017).

Continue —




Some references on determinantal space QMC‘

» S. Zhang, Auxiliary-Field Quantum Monte Carlo at Zero- and
Finite-Temperature, in “Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9" edited by E. Pavarini, E. Koch,
and S. Zhang, Forschungszentrum Jiilich, (2019).

» G. H. Booth, A. J. W. Thom, and A. Alavi, Fermion Monte Carlo
without fixed nodes: a game of life, death, and annihilation in Slater
determinant space, J. Chem. Phys. 131, 054106 (2009).

» N.S. Blunt, S. D. Smart, J. A. F. Kersten, J. S. Spencer, G. H.
Booth, and A. Alavi, Semi-stochastic full configuration interaction

quantum Monte Carlo: developments and application, J. Chem.
Phys. 142, 184107 (2015).



