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Recap: where we started (1)

Solve the Schrödinger equation for the electrons in the ionic field

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i ̸=j

1

|ri − rj |

Solve for the wave function of the interacting electron system

Wave function Ψ(x1, . . . , xN) where x = (r, σ) and σ = ±1



Recap: basic concepts (2)

Possible “simple” approach

→ Start from one-particle {ψi (x)}
→ Build non-interacting many-body basis of determinants

Example: Configuration interaction

ΨCI(x1, . . . , xN) =
∑

k ckDk

⇕

ΨCI(x1, . . . , xN) =

Build solution as expansion over determinants



Recap: basic concepts (3)

Advantage of a linear expansion over determinants?

Find optimal coefficients by solving a generalized secular problem

ΨCI =
K∑
i=1

ciDi ⇒
K∑
j=1

⟨Di |H|Dj⟩c(k)j = E
(k)
CI

K∑
j=1

⟨Di |Dj⟩c(k)j

If Gaussian basis → All integrals computed analytically !

but slow convergence . . .

What about a wave function depending on rij ? Use Monte Carlo



Recap: Variational Monte Carlo (1)

We compute the expectation value of the Hamiltonian H as

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
dR

HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R)P(R)

= ⟨EL(R)⟩P

Obtain M samples distributed as P(R) and estimate EV as

ĒV =
1

M

M∑
i=1

EL(Ri )



Recap: Variational Monte Carlo (2)

The energy and variance can be rewritten as

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩ = ⟨EL(R)⟩P

σ2E =
⟨Ψ|(H− EV )

2|Ψ⟩
⟨Ψ|Ψ⟩ = ⟨(EL(R)− EV )

2⟩P

and estimated as averages

ĒV =
1

M

M∑
i=1

EL(Ri )

σ̄2E =
1

M

M∑
i=1

(EL(Ri )− ĒV )
2

The statistical Monte Carlo error goes as err(EV ) ∼
σE√
M

Note: For other operators, substitute H with O



Recap: Variational Monte Carlo (3)

To obtain M samples distributed as P(R), generate a Markov chain

. . .
M−−−→ R

M−−−→ R′ M−−−→ R′′ M−−−→ . . .

R

using M(Rf |Ri) probability for transition Ri → Rf

If M(Rf |Ri) ≥ 0 and

∫
dRfM(Rf |Ri) = 1

and if M satisfies stationarity condition:∫
dRiM(Rf |Ri) P(Ri) = P(Rf) ∀ Rf

⇒ Any initial distribution will evolve to P



Recap: Variational Monte Carlo (4)

In practice, we impose detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

���

���

We write M as proposal T × acceptance A

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) ���
����

��
����

and choose A(Rf |Ri) = min

{
1,

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

}

so that detailed balance condition is satisfied → P(R) is sampled



Recap: Variational Monte Carlo (5)

Some notes about Metropolis algorithm

a) P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2 does not have to be normalized

→ For complex Ψ we do not know the normalization!

b) Data generated in a Monte Carlo run are correlated

→ Choose a good T !

c) If Ψ → eigenfunction, EL(R) does not fluctuate

→ Fewer Monte Carlo steps needed to estimate EV



Typical VMC run

Example: Local energy and average energy of acetone (C3H6O)
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σ VMC

EVMC = ⟨EL(R)⟩P = −36.542± 0.001 Hartree (40×20000 steps)

σVMC = ⟨(EL(R)− EVMC)
2⟩P = 0.90 Hartree



Variational Monte Carlo → Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

⇒ More compact representation of Ψ than in quantum chemistry

⇒ Beyond c0DHF+ c1D1+ c2D2+ . . . millions of determinants



Jastrow-Slater wave function

Commonly employed compact Jastrow-Slater wave functions

Ψ(r1, . . . , rN) = J (r1, . . . , rN)×
∑
i

ci Di (r1, . . . , rN)

×

J −→ Jastrow correlation factor

− Explicit dependence on electron-electron distances rij∑
ci Di −→ Determinants of single-particle orbitals

− Few and not millions of determinants



Divergences in the potential

At interparticle coalescence points, the potential diverges as

− Z

riα
for the electron-nucleus potential

1

rij
for the electron-electron potential

Local energy
HΨ

Ψ
= −1

2

∑
i

∇2
i Ψ

Ψ
+ V must be finite

⇒ Kinetic energy must have opposite divergence to the potential V



Divergence in potential and behavior of the local energy

Consider two particles of masses mi , mj and charges qi , qj

Assume rij → 0 while all other particles are well separated

Keep only diverging terms in
HΨ

Ψ
for particles i and j

and go to relative coordinates close to r = rij = 0

− 1

2µij

∇2Ψ

Ψ
+ V(r) ∼ − 1

2µij

1

Ψ

(
∂2Ψ

∂r2
+

2

r

∂Ψ

∂r

)
+ V(r) + . . .

∼ − 1

µij

1

r

Ψ′

Ψ
+ V(r) + . . .

where µij = mi mj/(mi +mj) and we assumed Ψ(r = rij = 0) ̸= 0



Divergence in potential and cusp conditions

Diverging terms in the local energy

− 1

µij

1

r

Ψ′

Ψ
+ V(r) = − 1

µij

1

r

Ψ′

Ψ
+

qiqj
r

= finite

⇒ Ψ must satisfy Kato’s cusp conditions:

∂Ψ̂

∂rij

∣∣∣∣∣
rij=0

= µijqi qjΨ(rij = 0)

where Ψ̂ is a spherical average

Note: We assumed Ψ(rij = 0) ̸= 0



Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

Ψ′

Ψ
= µijqi qj

• Electron-nucleus: µ = 1, qi = 1, qj = −Z ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= −Z

• Electron-electron: µ =
1

2
, qi = 1, qj = 1 ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= 1/2



Cusp conditions and QMC wave functions

▷ Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

J (rij) =
∏
i<j

exp

{
b0

rij
1 + b rij

}

with b↑↓0 =
1

2
or b↑↑0 = b↓↓0 =

1

4

Imposes cusp conditions
+

keeps electrons apart
00

rij

▷ Electron-nucleus cusps imposed through the determinantal part



The effect of the Jastrow factor

Pair correlation function for ↑↓ electrons in the (110) plane of Si

g↑↓(r, r
′) with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)



Dynamic and static correlation

Ψ = Jastrow × Determinants → Two types of correlation

▷ Dynamic correlation

Described by Jastrow factor

Due to inter-electron repulsion

Always present

▷ Static correlation

Described by a linear combination of determinants

Due to near-degeneracy of occupied and unoccupied orbitals

Not always present



Static correlation

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration 1s22s2

Additional important configuration 1s22p2

1s22s2 × J (rij) → E corr
VMC = 61%

1s22s2 ⊕ 1s22p2 × J (rij) → E corr
VMC = 93%

where E corr = Eexact − EHF



Why should ΨQMC = JD work?

Full wave-function
Ψ

−→ Factorized wave-function
JΦ→ →

Full Hamiltonian
H

−→ Effective Hamiltonian
Heff

HΨ = EΨ −→ HJΦ= EJΦ → HJ
J Φ= EΦ

HeffΦ = EΦ

Heff weaker Hamiltonian than H

⇒ Φ ≈ non-interacting wave function D

⇒ Quantum Monte Carlo wave function Ψ = JD



Optimizing the wave function in QMC

Optimize by energy minimization → Tricky?

Statistical error: Both a blessing and a curse!

Ψ{αk} → Energy and its derivatives wrt parameters {αk}

EV =

∫
dR

HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2 = ⟨EL⟩Ψ2

∂kEV =

〈
∂kΨ

Ψ
EL +

H∂kΨ
Ψ

− 2EV
∂kΨ

Ψ

〉
Ψ2

= 2

〈
∂kΨ

Ψ
(EL − EV )

〉
Ψ2

The last expression is obtained using Hermiticity of H



Use expressions with smaller fluctuations

Two mathematically equivalent expressions of the energy gradient

∂kEV =

〈
∂kΨ

Ψ
EL +

H∂kΨ
Ψ

− 2EV
∂kΨ

Ψ

〉
Ψ2

= 2

〈
∂kΨ

Ψ
(EL − EV )

〉
Ψ2

Why using the last expression?

0

δE Ψ =Ψ0

Lower fluctuations → 0 as Ψ → Ψ0

Play similar tricks with the Hessian or its approximations

→ Toolbox of optimization approaches

Umrigar, Toulouse, Sorella, Filippi, Scemama (2005-2007)



Important developments → Efficient computation of derivatives!

Computing Ψ, EL, ∂Ψ, ∂EL for many parameters + determinants

Example: Polyenes CnHn+2 → from C4H6 to C60H62
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wave function optimization geometry optimization

+ Optimization tools → QMC “internally consistent”

Filippi, Assaraf, Moroni, JCP (2016); JCTC (2017)



Beyond VMC?

Removing or reducing wave function bias?

⇒ Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function Ψ
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Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



Why going beyond VMC?

What goes in, comes out! Can we remove wave function bias?

Projector (diffusion) Monte Carlo method

▷ Construct an operator which inverts spectrum of H
Diffusion Monte Carlo → e−τ(H−Eref)

▷ Use it to stochastically project the ground state of H



Diffusion Monte Carlo (1)

Consider initial guess |Ψ(0)⟩ (e.g. JD we used in VMC)

Repeatedly apply projection operator

|Ψ(n)⟩ = e−τ(H−Eref)|Ψ(n−1)⟩

To understand what one obtains, perform a “thought experiment”

and expand Ψ(0) on the eigenstates Ψi with energies Ei of H

|Ψ(n)⟩ = e−nτ(H−Eref)|Ψ(0)⟩ = e−nτ(H−Eref)
∑
i

|Ψi ⟩ ⟨Ψi |Ψ(0)⟩

=
∑
i

e−nτ(H−Eref)|Ψi ⟩ ⟨Ψi |Ψ(0)⟩

=
∑
i

e−nτ(Ei−Eref)|Ψi ⟩ ⟨Ψi |Ψ(0)⟩

continues on next page



Diffusion Monte Carlo (2)

Continuing from previous page

|Ψ(n)⟩ = e−nτ(E0−Eref)
∑
i

e−nτ(Ei−E0)|Ψi ⟩ ⟨Ψi |Ψ(0)⟩

= e−nτ(E0−Eref)
(
|Ψ0⟩ ⟨Ψ0|Ψ(0)⟩+ e−nτ(E1−E0)|Ψ1⟩ ⟨Ψ1|Ψ(0)⟩ . . .

)
and obtain in the limit of n → ∞

lim
n→∞

|Ψ(n)⟩ = |Ψ0⟩⟨Ψ0|Ψ(0)⟩e−nτ(E0−Eref)

If we choose Eref ≈ E0, we obtain lim
n→∞

|Ψ(n)⟩ = |Ψ0⟩



How do we perform the projection? (1)

|Ψ(n)⟩ = e−τ(H−Eref)|Ψ(n−1)⟩

Rewrite projection equation in real-space representation

⇒ ⟨R′|Ψ(n)⟩ = ⟨R′|e−τ(H−Eref)|Ψ(n−1)⟩

⟨R′|Ψ(n)⟩ =

∫
dR ⟨R′|e−τ(H−Eref)|R⟩⟨R|Ψ(n−1)⟩

which we rewrite as

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = ⟨R′|e−τ(H−Eref)|R⟩



How do we perform the projection? (2)

Projection equation in integral form

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = ⟨R′|e−τ(H−Eref)|R⟩

▷ Can we sample the wave function?

For the moment, assume we are dealing with bosons , so Ψ > 0

▷ Can we interpret G (R′,R, τ) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

VMC Distribution function is given P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

Construct M which satisfies stationarity condition so that

lim
n→∞

∫
dRn · · · dR1M(R,Rn) · · ·M(R3,R2)M(R2,R1)Pinit(R1) = P(R)

DMC Opposite procedure!

The matrix M is given → M ≡ G = ⟨R′|e−τ(H−Eref)|R⟩

We do not know P !

lim
n→∞

∫
dRn · · · dR1G (R,Rn) · · ·G (R3,R2)G (R2,R1)Pinit(R1) = Ψ0(R)

In either case, we want to find the dominant eigenvector of M



What we know about the Green’s function

Ψ(t) = e−t(H−Eref)Ψ(0)

Ψ(R, t) satisfies the imaginary-time Schrödinger equation

(H− Eref)Ψ(R, t) = −∂Ψ(R, t)

∂t

Ψ(R, t) =

∫
dR0 G (R,R0, t)Ψ

(0)(R0)

G (R′,R, t) satisfies the imaginary-time Schrödinger equation

(H− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t

with G (R′,R, t) = ⟨R′|e−t(H−Eref)|R⟩ and G (R′,R, 0) = δ(R′−R)



Can we interpret G (R′,R, τ) as a transition probability? (1)

H = T

Imaginary-time Schrödinger equation is a diffusion equation

−1

2
∇2G (R,R0, t) = −∂G (R,R0, t)

∂t

The Green’s function is given by a Gaussian

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Positive and can be sampled



Can we interpret G (R′,R, τ) as a transition probability? (2)

H = V

(V(R)− Eref)G (R,R0, t) = −∂G (R,R0, t)

∂t
,

The Green’s function is given by

G (R′,R, τ) = exp [−τ (V(R)− Eref)] δ(R− R′),

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution Ψ(R, t)



H = T + V and a combination of diffusion and branching

Trotter’s theorem → e(A+B)τ = eAτeBτ +O(τ2)

⟨R′|e−Hτ |R0⟩ ≈ ⟨R′|e−T τe−Vτ |R0⟩

=

∫
dR′′⟨R′|e−T τ |R′′⟩⟨R′′|e−Vτ |R0⟩

= ⟨R′|e−T τ |R0⟩e−V(R0)τ

The Green’s function in the short-time approximation to O(τ2) is

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R)− Eref)]



H = T + V and a combination of diffusion and branching

Green’s function in the short-time approximation to O(τ2)

G (R′,R, τ) ≈ (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R)− Eref)]

→ Diffusion + reweight factor leading to survival/death/cloning

→ DMC results must be extrapolated at short time-steps (τ → 0)



Diffusion and branching in a harmonic potential

Ψ(x)
0

V(x)

Walkers proliferate/die where potential is lower/higher than Eref



Time-step extrapolation

Example: Energy of Li2 versus time-step τ

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1. Sample Ψ(0)(R) with the Metropolis algorithm

Generate M0 walkers R1, . . . ,RM0 (zeroth generation)

2. Diffuse each walker as R′ = R+ ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. For each walker, compute the factor

p = exp [−τ(V(R)− Eref)]

p is the probability to survive/proliferate/die

4. Adjust Eref so that population fluctuates around target M0

→ After many iterations, walkers distributed as Ψ0(R)



Problems with simple algorithm

The simple algorithm is inefficient and unstable

▷ Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction → Exploding population

▷ Branching factor grows with system size



Importance sampling

Start from integral equation

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

Multiply each side by trial ΨT and define π(R, t) = ΨT(R)Ψ(R, t)

π(R′, t + τ) =

∫
dR G̃ (R′,R, τ)π(R, t)

where the importance sampled Green’s function is

G̃ (R′,R, τ) = ΨT(R
′)⟨R′|e−τ(H−Eref)|R⟩/ΨT(R)

We obtain lim
n→∞

π(R) = ΨT(R)Ψ0(R)



Importance sampled Green’s function

The importance sampled G̃ (R,R0, τ) satisfies

−1

2
∇2G̃ +∇ · [G̃ V(R)] + [EL(R)− Eref ] G̃ = −∂G̃

∂τ

with quantum velocity V(R) =
∇ΨT(R)

ΨT(R)
and EL(R) =

HΨT(R)

ΨT(R)

We now have drift in addition to diffusion and branching terms

Trotter’s theorem ⇒ Consider them separately for small enough τ



The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R− τV(R))2

2τ

]
×

× exp {−τ (EL(R)− Eref)}

What is new in the drift-diffusion-branching expression?

▷ V(R) pushes walkers where Ψ is large

▷ EL(R) is better behaved than the potential V(R)

Cusp conditions ⇒ No divergences when particles approach

As ΨT → Ψ0, EL → E0 and branching factor is smaller



Basic DMC algorithm with importance sampling

1. Sample initial walkers from |ΨT(R)|2

2. Drift and diffuse the walkers as R′ = R+ τV(R) + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. Branching step as in the simple algorithm but with the factor

p = exp
{
−τ [(EL(R) + EL(R

′))/2− Eref ]
}

4. Adjust the trial energy to keep the population stable

→ After many iterations, walkers distributed as ΨT(R)Ψ0(R)



Electrons are fermions!

We assumed that Ψ0 > 0 and that we are dealing with bosons

Fermions → Ψ is antisymmetric and changes sign!

Fermion Sign Problem

All fermion QMC methods suffer from sign problems

These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Idea Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function Ψ(x , τ = 0)

Rewrite Ψ(x , τ = 0) as

Ψ = Ψ+ −Ψ−

where

Ψ+ =
1

2
(|Ψ|+Ψ)

Ψ− =
1

2
(|Ψ| −Ψ)

+ −

Ψ

Ψ τ=0 Ψ

τ=0

τ=0

(x,      )

(x,      ) (x,      )



Particle in a box and the fermionic problem (1)

The imaginary-time Schrödinger equation

HΨ = −∂Ψ
∂t

is linear, so solving it with the initial condition

Ψ(x , t = 0) = Ψ+(x , t = 0)−Ψ−(x , t = 0)

is equivalent to solving

HΨ+ = −∂Ψ+

∂t
and HΨ− = −∂Ψ−

∂t

separately and subtracting one solution from the other



Particle in a box and the fermionic problem (2)

▷ Since E s
0 < E a

0 , both Ψ+ and Ψ− evolve to Ψs
0

Ψ± −→

▷ Antisymmetric component exponentially harder to extract

|Ψ+ −Ψ−|
|Ψ+ +Ψ−|

∝ e−E a
0 t

e−E s
0 t

as t → ∞



The Fixed-Node Approximation

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable 
barrier



Fixed-node algorithm in simple DMC

impenetrable 
barrier

How do we impose this additional boundary condition?

▷ Annihilate walkers that bump into barrier (and into walls)

→ This step enforces Ψ = 0 boundary conditions

→ In each nodal pocket, evolution to ground state in pocket

Numerically stable algorithm (no exponentially growing noise)

→ Solution is exact if nodes are exact

→ Best solution consistent with the assumed nodes



For many electrons, what are the nodes? A complex beast

Many-electron wave function Ψ(R) = Ψ(r1, r2, . . . , rN)

Node → surface where Ψ = 0 and across which Ψ changes sign

A 2D slice through the 321-dimensional nodal surface

of a gas of 161 spin-up electrons.



Some known properties of the nodes

Physical space has d (=1,2,3) dimensions

▶ Node is (dN − 1)-dimensional surface in dN dimensions

One constraint (Ψ = 0) ⇒ (dN − 1) -dimensional node

▶ Equations as ri = rj define (dN − d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

▶ If d = 1, coincidence points xi = xj define the ground-state
node completely → One-dim problems are easy to simulate



Nodal pockets can be divided up into classes

Start from R0 and continously reach all points with Ψ(R) ̸= 0

⇒ Nodal pocket accessible from R0

Map this subvolume over rest of the space with permutations
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Use the nodes of trial ΨT → Fixed-node approximation

Use the nodes of the best available trial ΨT wave function

(R)=0Ψ

(R)>0 RΨ

Find best solution with same nodes as trial wave function ΨT

Fixed-node solution exact if the nodes of trial ΨT are exact

Easy to implement in DMC with importance sampling: π ≥ 0



Fixed-node solution and importance-sampling DMC

Given trial ΨT(R), evolve π(R, t) = ΨT(R)Ψ(R, t) as

−1

2
∇2π +∇ · [πV(R)] + [EL(R)− Eref ]π = −∂π

∂τ

with V(R) =
∇ΨT(R)

ΨT(R)
and EL(R) =

HΨT(R)

ΨT(R)

Fixed-node approximation → π(R, t) ≥ 0



Have we solved all our problems?

Results depend on the nodes of the trail wave function Ψ

Diffusion Monte Carlo as a black-box approach?

ϵMAD for atomization energy of the G1 set

DMC CCSD(T)/aug-cc-pVQZ

HF orb Optimized orb CAS
ϵMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on Ψ, we can do rather well



Diffusion Monte Carlo as a black-box approach?

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP/aug-cc-PVTZ orbitals versus CCSD(T)/CBS

that FN-DMC with single-determinant trial functions is able to
approach the CCSD(T)/CBS reference to within 0.1 kcal/mol
(one standard deviation errors are reported) for small
complexes. In addition, the identified easy-to-use protocol is
tested on larger complexes, where the reliability of CCSD(T)
has yet to be fully tested. Here, the final FN-DMC results agree
to within 0.25 kcal/mol with the best available estimates. These
results show the potential of QMC for reliable estimation of
noncovalent molecular interaction energies well below chemical
accuracy.
The calculations were performed on a diverse set of

hydrogen and/or dispersion bound complexes for which
reliable estimates of interaction energies already exist8,39,40

and which were previously studied within QMC.26,29,34,35 The
considered test set consists of the dimers of ammonia, water,
hydrogen fluoride, methane, ethene, and the ethene/ethyne
complex (Figure 2). The larger considered complexes include
benzene/methane, benzene/water, and T-shape benzene dimer
(Figure 2).

■ ADJUSTING THE QMC PROTOCOL
The present methodology was developed via extensive testing
and elimination of the biases that affect the final FN-DMC
energies. Clearly, this has to be done in a step-by-step manner
since several sets of parameters enter the multistage refinement
strategy16,21 on the way to the final FN-DMC results. The
sequence of the steps includes (i) the construction of the trial
wave function, (ii) its VMC optimization, and (iii) FN-DMC
production calculation. The tasks i and ii involve optimizations
which affect the final interaction energies obtained in iii as the
differences of the statistically independent total energies.
We employ trial wave functions of the Slater-Jastrow

type,10,11 in general, a product of the sum of determinants

and a positive definite Jastrow term12 explicitly describing the
interparticle correlations. Remarkably, we have found that
single-reference wave functions filled with B3LYP/aug-TZV
orbitals reach the desired accuracy criterion for the whole test
set; consequently, multiple determinants were not considered.
Orbital sets from other methods were mostly comparable; in
the ammonia dimer complex, for instance, the HF nodes
provide the same FN-DMC interaction energy as B3LYP
(−3.12 ± 0.07 vs −3.10 ± 0.06 kcal/mol) within the error bars,
due to the FN error cancellation26,28,29 (cf. Figure 1).
Nevertheless, the total energies from B3LYP orbitals were
found to be variationally lower than those from HF (in dimer
by ∼0.001 au), in agreement with previous experience.15,41

Regarding the one-electron basis set, tests on the ammonia
dimer confirm the crucial effect of augmentation functions (cf.
ref 29). For the same system, TZV and QZV bases result in
interaction energies of −3.33 ± 0.07 and −3.47 ± 0.07, whereas
the aug-TZV and aug-QZV bases give −3.10 ± 0.06 and −3.13
± 0.6 kcal/mol, so that the impact of augmentation is clearly
visible and in accord with the reference value of −3.15 kcal/
mol.40 On the other hand, the increase of basis set cardinality
beyond the TZV level plays a smaller role than in the
mainstream correlated wave function methods.
In order to reduce the numerical cost of the calculations,

effective core potentials (ECP) were employed for all elements
(cf. Methods). Typically, this causes a mild dependence of the
FN-DMC total energy on the Jastrow factor,42,43 which cancels
out in energy differences with an accuracy ≈ 1 kcal/mol. In our
systems, elimination of this source of bias requires fully
converged Jastrow factors including electron−electron, elec-
tron−nucleus, and electron−electron−nucleus terms so as to
keep the target of 0.1 kcal/mol margin in energy differences.
This is true except for the water dimer, where a standard
Jastrow factor produces inaccurate energy difference (−5.26 ±
0.09 kcal/mol, cf. Table 1), and a distinct Jastrow factor
including unique parameter sets for nonequivalent atoms of the
same type is required.44 For the sake of completeness, we note
that the model of ammonia dimer, taken from the S22 set,39 is
not a genuine hydrogen bonded case, where the same behavior
would be expected, but a symmetrized transition structure that
apparently does not require more parameters in the Jastrow
factor. Note that a more economic variant of the correlation
factor, with only electron−electron and electron−nucleus
terms, doubles the average error on the considered test set,
and therefore it would be inadequate for our purposes.44 The
parameters of the Jastrow factor were exhaustively optimized
for each complex and its constituents separately, using a linear
combination of energy and variance cost function.45 We have
found that for large complexes, 7−10 iterations of VMC
optimization are sometimes necessary to reach the full
convergence.
The production protocol thus consists of (i) Slater−Jastrow

trial wave functions of B3LYP/aug-TZV quality, (ii) a
converged VMC optimization of the Jastrow factor with
electron−electron, electron−nucleus, and electron−electron−
nucleus terms, and (iii) a FN-DMC ground-state projection
using the T-moves scheme43 and a time step of 0.005 au. Note
that the VMC reoptimization of orbitals has not been explored,
although it could be tested in the future as well. The error bars
were converged to at least ∼0.1 kcal/mol in the projection time
of several thousands of atomic units.

Figure 2. The set of molecules used in the present work (from top left,
to bottom right): ammonia dimer, water dimer, hydrogen fluoride
dimer, methane dimer, ethene dimer, and the complexes of ethene/
ethyne, benzene/methane, benzene/water, and benzene dimer T-
shape.

Journal of Chemical Theory and Computation Letter

dx.doi.org/10.1021/ct4006739 | J. Chem. Theory Comput. 2013, 9, 4287−42924289

∆MAD = 0.058 kcal/mol

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on Ψ, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy for different choices of wave function

4.8

4.9

5.0

5.1

5.2

5.3

 HF/HL CIS (6,5) (6,10) (14,13)  1k 6k 11k 18k

exFCI

CC3

CAS CIPSI

V
e

rt
ic

a
l e

xc
ita

tio
n

 e
n

e
rg

y 
(e

V
)

  VMC
  DMC

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on Ψ pays off!



DMC and solid state calculations

Example: Structural/magnetic properties of superconducting FeSe

→ Accurate lattice constants, bulk moduli, and band dispersion

→ Resolving relative energetics of different magnetic ordering
COMPETING COLLINEAR MAGNETIC STRUCTURES IN . . . PHYSICAL REVIEW B 94, 035108 (2016)

)d()c()b()a(

FIG. 1. Spin densities of magnetic orderings at ambient pressure: (a) collinear, (b) collinear, one flip, (c) bicollinear, and (d) checkerboard.
Four unit cells of a single iron layer are shown, divided by black lines. “Collinear, one flip” refers to flipping the spin of one iron per unit cell in
the collinear configuration. Since four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger red Se
atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller and blue and lie within a larger concentration
of spin. The two colors of the isosurfaces denote density of up and down.

cannot describe long-range fluctuations of the magnetic order
that might be the cause of loss of long-range order. For the
experimental crystal structure, the collinear magnetic ordering
is the lowest in energy in our calculations and is observed to
be the dominant short-range order experimentally [12]. The
energetic cost of introducing a “defect” into the magnetic
order is quite small; we will discuss that aspect later. Both the
DMC(opt) and DMC(PBE0) approaches result in a rather large
magnetic moment on the Fe atom. For the collinear magnetic
ordering we obtain a value of ∼3.4µB for DMC(PBE0) and
a slightly lower ∼3.1µB for the fully optimized calculations.
In both cases the magnetic moment is close to the atomic
limit.

Between the two DMC approaches, the energy difference
between different magnetic orderings is in agreement within
stochastic errors, so there is good reason to believe that the
cheaper DMC(PBE0) technique is accurate. In comparison to
PBE calculations, which are the most common in the literature,
the relative energies according DMC are quite different,
including the lowest-energy magnetic phase, which is the
“staggered dimer” configuration in DFT [50–52] but turns
out to be the collinear configuration in DMC. It appears that
hybrid DFT calculations in the PBE0 approximation obtain
reasonably good magnetic energy differences in comparison
to DMC; since this functional also produced the orbitals that
gave the lowest FN-DMC energy, it may be capturing some of
the correct physics for the magnetic properties of this material.

However, the PBE0 functional predicts an insulating gap [53]
for FeSe for all magnetic orderings, in contrast to DMC and
experiment.

B. Crystal structure

Obtaining the correct crystal structure for FeSe is a major
challenge since the layers interact through nonbonded interac-
tions. The c lattice parameter in particular is affected by van
der Waals interactions, and electron correlation plays a key role
in determining the in-plane physics. The behavior of FeSe’s
superconducting properties under pressure gives another clue
to the importance of structural variations in its description. A
first-principles prediction of the lattice parameters is thus an
important test of the description of this physics. Since the DMC
calculations are computationally costly, we limited our study
to the tetragonal phase of FeSe. Because the low-temperature
orthorhombic distortion is small [10], one might expect that
its effect on the overall electronic structure is also small. We
leave such considerations to another paper.

The equilibrium lattice parameters of FeSe are presented in
Table I. As mentioned in the previous sections, these results
are obtained with a direct optimization of FeSe cell parameters
with the VMC(opt) method. The in-plane FeSe properties
should be well captured by QMC since the a lattice parameter
is in close agreement with experimental results (within ∼4σ )
independently of the chosen magnetic configuration. Both
collinear and paramagnetic wave functions show also a

TABLE I. FeSe optimal structural parameters with different computational methods. DFT calculations have been performed with the
software package QUANTUM ESPRESSO [54] using a 10 × 10 × 10 k-point mesh, an energy cutoff of 75 Ry, and norm-conserving pseudopotentials
for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at only the " point with the 16-f.u. FeSe supercell containing
32 atoms.

Source Magnetic ordering a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862
DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568
VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)
VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)
Experiment [55], T 7 K 3.7646(1) 5.479 20(9) 1.4622
Experiment [48], T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879
Experiment [10], T 300 K 3.7724(1) 5.5217(1) 1.4759

035108-3
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Alternatives to fixed-node DMC: Releasing the nodes (1)

First do a fixed-node DMC simulation
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Alternatives to fixed-node DMC: Releasing the nodes (1)

Then release the nodes

▶ Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

▶ Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

− Determinantal QMC by Zhang and Krakauer

Appears less plagued by fixed phase than DMC by FN

− Full-CI QMC by Alavi

Start from ΨCI =
∑

i ciDi

HΨ = −∂Ψ
∂t

→ Hijcj = −∂ci
∂t



DMC in summary

The fixed-node DMC method is (in general)

▶ Easy to do

▶ Stable

▶ Accurate enough for many applications in quantum chemistry

. . . especially in large systems

▶ Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states

▶ In the general landscape, we are not doing too badly

▶ Sensitivity to wave function but relatively robust

→ basis, choice of CAS (minimal CAS), truncation on CSFs



Beauty of quantum Monte Carlo → Highly parallelizable

Ψ(r1, . . . , rN) → Ensemble of walkers diffusing in 3N dimensions

VMC → Independent walkers ⇒ Trival parallelization

DMC → Nearly independent walkers ⇒ Few communications

Easily take great advantage of parallel supercomputers!
VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
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FIG. 2. CPU time on a 667 MHz EV67 alpha processor to
move a configuration of electrons within DMC for SiH4, Si5H12,
Si35H36, Si87H76, Si123H100, Si211H140, C20, C36, C60, C80, and
C180.

functions in a plane wave basis scales as approximately
N3. The exact scaling is determined by the volume of the
supercell chosen for each system. The computational cost
of the Gaussian basis also scales as N3, but with a smaller
prefactor as the number of basis functions per atom is much
smaller. The calculations using the truncated MLW func-
tions demonstrate that the CPU time required to move a
single configuration of electrons scales approximately lin-
early with the number of electrons. The deviations from
linearity in the hydrogenated silicon cluster MLW curves
are mainly due to differing ratios of hydrogen to silicon
atoms; for the carbon fullerenes, they are due to differ-
ent strain in the clusters requiring slightly different cutoff
radii for the MLW functions. For the systems we com-
pared (SiH4 and Si5H12), the DMC energies for all three
basis sets agreed within 0.001 hartree per atom statistical
error bars.

Once the cost of evaluating the Slater determinant has
been reduced to linear scaling, it is interesting to ask how
large a system one can study before other parts of the al-
gorithm will begin to dominate and the linear scaling will
be lost. For the Si211H140 system (984 electrons), approxi-
mately 10% of the calculation involves the remaining parts
of the algorithm that scale as N2 and N3. With relatively
minor algorithmic improvements, the cost of these terms
could be dramatically reduced, extending the linear regime
to several thousand electrons. In particular, we envisage
(i) the electron-ion interaction could be rewritten with the
sum over ions precomputed so the local part scales linearly.
The nonlocal contribution already scales linearly due to
the cutoff in the range of the interaction. (ii) The electron-
electron interaction could be rewritten to scale linearly by
writing it as a sum of short- and long-ranged pieces [1,7],
or using Greengard’s multipole expansion [20]. (iii) To up-
date the Slater determinant, we adopt the N 3 scaling pro-
cedure based on storing the inverse of the transpose of the
matrix from Ref. [21]. Our introduction of sparsity into

the Slater determinant allows us to significantly reduce the
prefactor for this N3 term. In larger systems where the
determinant is increasingly sparse, it should be possible
to reformulate the determinant update procedure to utilize
this sparsity and obtain a better size scaling.

Note, the discussion thus far involves the scaling of the
computational cost of moving a single configuration of
electrons. In practice, one calculates either (i) the total
energy of the system, or (ii) the energy per atom, with a
given statistical error. The statistical error, d, is related
to the number of uncorrelated moves, M, by d ! s!

p
M,

where s2 is the intrinsic variance of the system. Typi-
cally, the value of s2 increases linearly with system size.
Therefore, to calculate the total energy with a fixed d, the
number of moves, M, must also increase linearly. When
multiplied by our linear increase in the cost of each move,
an N2 size scaling is obtained. For quantities per atom,
such as the binding energy of a bulk solid, s2 still in-
creases linearly with system size, but d is decreased by a
factor of N , and, hence, the number of required moves, M,
actually decreases linearly with system size. Therefore the
cost of calculating energies per atom is now independent
of system size.

To illustrate the range of systems that can now feasibly
be studied within QMC using truncated MLW functions
in the Slater determinant, we have calculated total ener-
gies of a series of carbon fullerenes. In Fig. 3 we plot the
binding energy per atom of C20, C36, C60, C80, and C180
fullerenes. Line (a) shows the binding energies calculated
using LDA; line (b) shows the binding energy calculated
within fixed node DMC. The LDA calculations were per-
formed at the G point of the Brillouin zone, using a cutoff
of 40 Ry. The same pseudopotentials were used in the
LDA and DMC calculations. Six points were used in the
QMC angular integration for the nonlocal pseudopotential.
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FIG. 3. Binding energy per atom (a) within LDA, and
(b) within DMC of carbon fullerenes. DMC statistical error
bars are smaller than the symbols. For comparison, we
have added 0.18 eV zero point energy to the bulk graphite
experimental binding energy [22].
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Up to Si123H100 and C180 !

Williamson, Hood, Grossman (2001)

structures and rapidly decreases to less than 0.1 Å as the cluster
size increases to ∼2 nm. In these clusters, Figure 2a shows that
the change in charge density resulting from the HOMO to
LUMO excitation is distributed relatively evenly throughout the
cluster and hence all atoms experience forces of approximately
equal magnitude. This equality of forces is confirmed by the
similar magnitude of the vector displacements plotted in the
right column of Figure 2a. These displacements show that the
shape of hydrogenated clusters changes from spherical to
elliptical upon excitation of one electron. As the size of the
hydrogenated clusters increases, the relative change in charge
density around each atom due to the excitation of a single
electron decreases inversely proportionally to the number of
atoms, and hence the rms displacements also decrease (see the
first five rows of Table 1).
The clusters with reconstructed surfaces, for example, Si29H24

(Figure 2b), and those with Si-O-Si bridged oxygen on the

surface, for example, Si29H34O (Figure 2c), show smaller rms
displacements than do the completely hydrogenated clusters.
In these reconstructed clusters, the charge density change
associated with the HOMO-LUMO excitation is localized at
the surface, and therefore the surface atoms experience the
greatest force. Similar to hydrogenated clusters, as the size of
the reconstructed clusters increases, the change in charge density
due to the excitation of a single electron from the HOMO to
LUMO is distributed over a larger area, and hence the force on
each individual surface atom again decreases with size; this is
confirmed by the decreasing rms displacements of the larger
reconstructed clusters.
In the clusters with oxygen double bonded to the surface,

for example, Si35H35O (Figure 2d), the rms displacement is
slightly larger. However, in this case, considering the rms
displacement is somewhat misleading as almost all of the atomic
relaxation is concentrated on the double bonded oxygen atom.

Figure 2. The two left columns show charge density isosurfaces of the HOMO and LUMO orbitals of 1 nm clusters with different surface structures and
different passivants. The silicon atoms are gray, the hydrogen atoms are white, and the oxygen atoms are red. The isosurfaces are chosen at 50% of the
maximum amplitude. The right column shows vectors proportional to the displacement of each atom during the Stokes shift (see text). The displacements
have been magnified by 10 for clarity.

Optical Emission of Silicon Nanocrystals A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 9, 2003 2789



Going to larger systems pose new problems

as molecular crystals and adsorption on 2D materials [16–18].

As we demonstrate in Fig. S1, CCSD(T) and FN-DMC interaction energies are in sub-

chemical agreement in small systems such as the benzene-water dimer [11]. Nonetheless,

FN-DMC and CCSD(T) are still prohibitively expensive for most applications in biology

and chemistry, and as result, very little is known about how predictive these theoretical

methods are in the regime of larger molecules.

Straightforward extrapolations of interactions from small molecules to large complexes are

di�cult to make due to the interplay and accumulation of interactions that are non-additive,

anisotropic, or have many-body character [11, 19–22]. As such, a deeper understanding

of non-covalent interactions can be gained by directly applying state-of-the-art methods in

larger molecular complexes. Here, we use a frequently studied compilation, the L7 molecular

data set from Sedlak et al. [23] to ascertain the predictive power of FN-DMC and CCSD(T)

for relatively large complexes involving intricate ⇡ � ⇡ stacking, electrostatic interactions,

and hydrogen-bonding (see Fig. S2). In addition, we consider a larger system of a C60

buckyball inside a [6]-cycloparaphenyleneacetylene ring (which we label as C60@[6]CPPA),

consisting of 132 atoms. This structure has a number of interesting features: (i) an open-

FIG. S1. The CCSD(T) and FN-DMC computed binding energies of a water-benzene dimer [11]

is shown in comparison to a buckyball-ring complex computed here. It can be seen that the

binding energy increases by a factor ⇠ 10, near-linearly with the size of the system, whereas the

corresponding disagreement between CCSD(T) and FN-DMC increases by a factor of ⇠ 100.

4
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To conclude: ongoing research in QMC

▶ Search for different forms of trial wave function

Neural network architecture → Ψ of multi-electron orbitalsAB INITIO SOLUTION OF THE MANY-ELECTRON … PHYSICAL REVIEW RESEARCH 2, 033429 (2020)

FIG. 1. The Fermionic neural network (FermiNet). Top: Global architecture. Features of one or two electron positions are inputs to different
streams of the network. These features are transformed through several layers, a determinant is applied, and the wave function at that position
is given as output. Bottom: Detail of a single layer. The network averages features of electrons with the same spin together, then concatenates
these features to construct an equivariant function of electron position at each layer.

single determinant made up of these permutation-equivariant
functions is sufficient to represent any antisymmetric function
(see Appendix B); however, the practicality of approximat-
ing an antisymmetric function will depend on the choice
of permutation-equivariant function class; we hence use a
small linear combination of nk determinants in this work.
The construction of a set of these permutation-equivariant
functions with a neural network is the main innovation of
the FermiNet. We emphasize that determinants constructed
from permutation-equivariant functions are substantially more
expressive than conventional Slater determinants. Figure 1
contains a schematic of the network and Algorithm I pseu-
docode for evaluating the network.

The Fermionic neural network takes features of single
electrons and pairs of electrons as input. As input to the single-
electron stream of the network, we include both the difference
in position between each electron and nucleus ri − RI and
the distance |ri − RI |. The input to the two-electron stream
is similarly the differences ri − r j and distances |ri − r j |.
Adding the absolute distances between particles directly as
input removes the need to include a separate Jastrow factor
after a determinant. As the distance is a nonsmooth func-
tion at zero, the neural network is capable of expressing the
nonsmooth behavior of the wave function when two particles
coincide—the wave-function cusps. Accurately modeling the
cusps is critical for correctly estimating the energy and other
properties of the system. The quality of the wave-function

cusps for the helium atom are investigated in Appendix F. We
denote the concatenation of all features for one electron h0

i ,
or h0α

i if we explicitly index its spin α ∈ {↑,↓}; the features
of two electrons are denoted h0

i j or h0αβ
i j . If the system has n↑

spin-up electrons and n↓ spin down electrons, then without
loss of generality we can reorder the electrons so that σ j =↑
for j ∈ 1, . . . , n↑ and σ j =↓ for j ∈ n↑ + 1, . . . , n.

To satisfy the overall antisymmetry constraint for a
fermionic wave function, intermediate layers of the Fermionic
Neural Network must mix information together in a
permutation-equivariant way. Permutation-equivariant neural
network layers like self-attention have gained success in re-
cent years in natural language processing [29] and protein
folding [30], but we pursue a simpler yet effective ap-
proach. Permutation-equivariant layers have also been widely
adopted in the computational chemistry and machine learn-
ing community for modeling energies and force fields from
atomic configurations [3,31,32]. The Fermionic Neural Net-
work shares some architectural details with these models, such
as the use of pairwise distances as inputs and parallel streams
of feature vectors, one per particle, through the network, but
is tailored specifically for mapping electronic configurations
to wave-function values with fixed atomic positions, rather
than mapping atomic positions to total energies and other
properties.

In our intermediate layers, we take the mean of activations
from different streams of the network, concatenate these mean

033429-3

Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

▶ Push optimization techniques to larger systems

▶ More work on transition metals

▶ Alternatives to fixed-node diffusion Monte Carlo



Other applications of quantum Monte Carlo methods

▶ Electronic structure calculations

▶ Strongly correlated systems (Hubbard, t-J, . . .)

▶ Quantum spin systems (Ising, Heisenberg, XY, . . .)

▶ Liquid-solid helium, liquid-solid interface, droplets

▶ Atomic clusters

▶ Nuclear structure

▶ Lattice gauge theory

Both zero (ground state) and finite temperature



Hands-on tutorial to learn real-space VMC and DMC

https://trex-coe.github.io/qmc-lttc-2023/index.html

Some references on VMC and DMC
▶ W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,

Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73,
33-83 (2001).

▶ A. Luchow, Quantum Monte Carlo methods. Wiley Interdiscip.
Rev.: Comput. Mol. Sci. 1, 388-402 (2011).

▶ B. M. Austin, D. Y. Zubarev, W. A. Lester, Quantum Monte Carlo
and Related Approaches. Chem. Rev. 112, 263-288 (2012).

▶ J. Toulouse, R. Assaraf, and C. J. Umrigar, Introduction to the
Variational and Diffusion Monte Carlo Methods, Adv. Quantum
Chem. 73, 285-314 (2016).

▶ J. Feldt and C. Filippi, Excited-state calculations with quantum
Monte Carlo in “Excited states: Methods for quantum chemistry
and dynamics”, edited by R. Lindh and L. Gonzalez (Wiley, 2020).

▶ F. Becca and S. Sorella, Quantum Monte Carlo Approaches for
Correlated Systems (Cambridge University Press, 2017).

Continue →



Some references on determinantal space QMC

▶ S. Zhang, Auxiliary-Field Quantum Monte Carlo at Zero- and
Finite-Temperature, in “Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9” edited by E. Pavarini, E. Koch,
and S. Zhang, Forschungszentrum Jülich, (2019).

▶ G. H. Booth, A. J. W. Thom, and A. Alavi, Fermion Monte Carlo
without fixed nodes: a game of life, death, and annihilation in Slater
determinant space, J. Chem. Phys. 131, 054106 (2009).

▶ N. S. Blunt, S. D. Smart, J. A. F. Kersten, J. S. Spencer, G. H.
Booth, and A. Alavi, Semi-stochastic full configuration interaction
quantum Monte Carlo: developments and application, J. Chem.
Phys. 142, 184107 (2015).


