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A quick reminder: What is electronic structure theory?

A quantum mechanical and first-principle approach

−→ Collection of ions + electrons

↓
Only input: Zα, Nα

Work in the Born-Oppenheimer approximation

Solve the Schrödinger equation for the electrons in the ionic field

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i ̸=j

1

|ri − rj |



Solving the many-electron Schrödinger equation

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i ̸=j

1

|ri − rj |

What do we want to compute?

Fermionic ground state and low-lying excited states

Evaluate expectation values
⟨Ψn|O|Ψn⟩
⟨Ψn|Ψn⟩

Where is the difficulty?

Electron-electron interaction → Non-separable



Is there an optimal electronic structure approach?

• Density functional theory methods

Large systems but approximate exchange/correlation

Beyond? Green’s function approaches

Alternatives?

• Quantum chemistry post-Hartree-Fock methods

Accurate on small-medium systems

→ Jungle of approaches: CI, MCSCF, CC, CASPT2 . . .

• Quantum Monte Carlo techniques

Stochastic solution of the Schrödinger equation

Accurate correlated calculations for medium-large systems



If you can, use density functional theory!
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COMPUTATIONAL COST

Quantum chemistry Quantum Monte Carlo

N N6 4>

HUMAN TIME

Density functional theory

N3

Wave function methods



Density functional theory is cheap(er) and powerful but . . .

Many successful stories of DFT + efficient, user-friendly codes

Are we theoreticians out of job? Can anybody do it?

Better posed questions

Is it always a success story?

Do we have a black-box method close to perfection?

In principle −→ DFT is correct

BUT Exc[ρ] unknown functional of the density

In practice −→ Exc[ρ] must be approximated

. . . and sometimes things go wrong



Some open problems

Weakly bound, strongly correlated systems, . . .

Excitations with charge-transfer/multi-configurational character . . .

→ Effort in development of exchange-correlation functionals
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When DFT has problems → Wave function based methods

Work in the Born-Oppenheimer approximation

Solve the Schrödinger equation for the electrons in the ionic field

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i ̸=j

1

|ri − rj |

Solve for the wave function of the interacting electron system

Wave function Ψ(x1, . . . , xN) where x = (r, σ) and σ = ±1



When DFT has problems → Wave function based methods

Wave function Ψ(x1, . . . , xN) where x = (r, σ) and σ = ±1

Optimal wave functions and the variational theorem

Ψ(X, a) with X the space-spin variables and a the parameters

EV(a) =
⟨Ψ(a)|H|Ψ(a)⟩
⟨Ψ(a)|Ψ(a)⟩

≥ E0

EV(a) = E0 ⇔ Ψ(X, a) = Ψ0(X)



The variational method and the linear basis approach

Wave function as a linear combination of basis functions fn(X)

Ψ(X, a) =
∑
n

anfn(X) ⇒ EV(a) =

∑
n,m a∗namHnm∑
n,m a∗namSnm

where Hnm = ⟨fn|H|fm⟩ and Snm = ⟨fn|fm⟩

dE

da
= 2 [Ha− EvSa] = 0 ⇒ Haλ = EλSaλ



Linear basis approach → Generalized eigenvalue problem

Ψ as a linear combination of many-body functions fn(X)

Ψ(X, a) =
∑
n

anfn(X) ⇒ Haλ = EλSaλ

Important properties

▷ For a basis of size M, ∃ M eigenvalues and eigenfunctions

▷ McDonald’s theorem

E1 ≤ E2 ≤ . . . ≤ EM with E exact
n ≤ En



Merits and problems of the variational method

Find approximate solution Ψ to Schrödinger equation

Merits

▷ Upper bound is guaranteed

▷ Linear basis → Generalized eigenvalue problem

▷ Linear basis → McDonald’s theorem for excited states

Problems

▷ How do we compute the matrix elements Hnm and Snm?

▷ How do we access convergence?

▷ What goes in, comes out



How do we compute the matrix elements Snm and Hnm?

Integrals Hnm and Snm too slow to perform unless one-particle basis

→ Problem which can be solved by Monte Carlo integration

Many-body wave functions in traditional quantum chemistry

Interacting Ψ(x1, . . . , xN) ↔ Non-interacting basis ψ(x)

Ψ expanded in determinants of single-particle orbitals ψ(x)

Single-particle orbitals expanded in Gaussian basis

⇒ All integrals can be computed analytically



Determinants as a non-interacting basis (1)

Interested in interacting electron system with full Hamiltonian

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i ̸=j

1

|ri − rj |

and wave function Ψ(x1, . . . , xN) where x = (r, σ) and σ = ±1

Much easier problem → Hnon−int = h(1)(r1) + . . .+ h(1)(rN)

e.g. Hartree-Fock or Kohn-Sham equations



Determinants as a non-interacting basis (2)

If Hnon−int = h(1)(r1) + . . . h(1)(rN), proceed as follows:

▶ Solve for one-electron and build spin-orbitals

h(1)(r1)ϕi (r) = ϵiϕi (r) → ψi (x) = ϕi (r)χsi (σ)

▶ Create a product state by occupying N spin-orbitals

Ψnon−int(x1, . . . , xN) = ψ1(x1) . . . ψN(xN)

→ Hnon−intΨnon−int =

(
N∑
i=1

ϵi

)
Ψnon−int

▶ Anti-symmetrize as a Slater determinant (non-int solution)

D(x1, . . . , xN) = A{ψ1(x1) . . . ψN(xN)} → Hnon−intD =

(
N∑
i=1

ϵi

)
D
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Determinants as a non-interacting basis (3)

Starting point → Non-interacting Hartree-Fock wave function

DHF(x1, . . . , xN) =

∣∣∣∣∣∣∣
ψ1(x1) . . . ψ1(xN)

..
.

..
.

ψN(x1) . . . ψN(xN)

∣∣∣∣∣∣∣
Optimal spin-orbitals ψi (x) = ϕi (r)χsi (σ) satisfy HF equations−1

2
∇2 + vext(r) +

N∑
j=1

∫
dr′
|ϕj(r′)|2

|r − r′|

ϕi (r) + [v̂HFϕi ](r) = ϵiϕi (r)

⇒ occupied orbitals (ψ1 . . . ψN) + virtual orbitals (ψN+1 . . .)



Many-body wave functions in traditional quantum chemistry (1)

A jungle of acronyms: CI, CASSCF, MRCI, CASPT2 . . .

Expansion in linear combination of determinants

Ψ(x1, . . . , xN) −→ DHF =

∣∣∣∣∣∣∣
ψ1(x1) . . . ψ1(xN)

..
.

..
.

ψN(x1) . . . ψN(xN)

∣∣∣∣∣∣∣
←
−

←
−

c0DHF + c1D1 + c2D2 + . . . millions of determinants

←− ∣∣∣∣∣∣∣
ψ1(x1) . . . ψ1(xN)

..
.

..
.

ψN+1(x1) . . . ψN+1(xN)

∣∣∣∣∣∣∣
by constructing single, double, . . . up to N-body excitations



Many-body wave functions in traditional quantum chemistry (2)

Pros and cons of CI expansion in Slater determinants

ΨCI = c0DHF +
∑
ab

ca→bD
a→b +

∑
abcd

cab→cdD
ab→cd + . . .

Optimal CI coefficients by solving generalized eigenvalue equation

ΨCI =
K∑
i=1

ciDi ⇒
K∑
j=1

⟨Di |H|Dj⟩c
(k)
j = E

(k)
CI

K∑
j=1

⟨Di |Dj⟩c
(k)
j

Orbitals on a Gaussian basis → Integrals computed analytically

. . . but slowly converging expansion



Can we use a more compact Ψ?

We want to construct an accurate and more compact Ψ

Explicit dependence on the inter-electronic distances rij

How do we compute expectation values if no single-electron basis?

→ Real-space Monte Carlo methods in quantum mechanics



Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrödinger equation

Why (real-space) quantum Monte Carlo?

− Favorable scaling → Energy is O(N4)

− Flexibility in choice of functional form of wave function

− Easy parallelization

− Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto C136H44 (Alfé 2017)



Monte Carlo methods in general

Approaches which make repeated use of random numbers:

▶ to simulate truly stochastic events

▶ to solve deterministic problems using probabilities

Very important class of methods in statistical mechanics

→ Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations → Quantum Monte Carlo



A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

→ Throw darts, compute Acircle, compute π

Throw darts which land randomly within the square

# hits inside circle

# hits inside the square
=

Acircle

Asquare
=
π

4

↑
many, many hits



Monte Carlo integration (1)

We want to compute the integral of f(x) in the interval [a, b]

f(x)

xa b

I =

∫ b

a
f (x) dx = (b − a)

∫ b

a
f (x)

1

b − a
dx

= (b − a)⟨f ⟩[a,b]

where ⟨f ⟩[a,b] is the average of the function in the range [a, b]



Monte Carlo integration (2)

⟨f ⟩[a,b] =

∫ b

a
f (x)

1

b − a
dx

=

∫ b

a
f (x)P(x)dx

f(x)

xa b

x

P(x)
1/(b-a)

a b

Draw M random numbers distributed unformely in [a, b]

x

P(x)
1/(b-a)

a b
−→ ⟨f ⟩[a,b] ≈

1

M

M∑
i=1

f (xi )



A less uniform function

I =

∫ b

a
f (x) dx

=

∫ b

a

f (x)

P(x)
P(x) dx

f(x)

x
a b

xa b

P(x)

Draw M random numbers distributed as P(x)

xa b

P(x)
−→ I ≈ 1

M

M∑
i=1

f (xi )

P(xi )



Monte Carlo integration in a nutshell

We want to compute ⟨A⟩ =
∫ b

a
A(x)P(x)

with P(x) ≥ 0 and

∫ b

a
P(x) = 1 ← a probability density!

Monte Carlo → Sample {x1, . . . , xM} from P(x)

Estimate ⟨A⟩ ≈ 1

M

M∑
i=1

A(xi )

Statistical physics: P(x) =
e−βE(x)

Z
, the Boltzman distribution



A different way of writing the expectation values

Back to quantum mechanics!

Consider the expectation value of the Hamiltonian on Ψ

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

≥ E0

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

←
−

=

∫
dREL(R)P(R) = ⟨EL(R)⟩P

P(R) is a probability density and EL(R) =
HΨ(R)

Ψ(R)
the local energy



Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

▷ Sample R from P(R) using Metropolis algorithm

▷ Average local energy EL(R) =
HΨ(R)

Ψ(R)
to obtain EV as

EV = ⟨EL(R)⟩P ≈
1

M

M∑
i=1

EL(Ri )

R

Random walk in 3N dimensions, R = (r1, . . . , rN)

Just a trick to evaluate integrals in many dimensions



Is it really “just” a trick?

Si21H22

Number of electrons 4× 21 + 22 = 106

Number of dimensions 3× 106 = 318

Integral on a grid with 10 points/dimension → 10318 points!

MC is a powerful trick ⇒ Freedom in form of the wave function Ψ



Monte Carlo integration

We want to compute an integral

EV =

∫
dREL(R)P(R)

We sample P(R) → EV = ⟨EL(R)⟩P ≈
1

M

M∑
i=1

EL(Ri )

− Does the trick always work?

− How efficient is it?



The Central Limit Theorem

Probability density P and function f with finite mean and variance

µ =

∫
dx f (x)P(x) σ2 =

∫
dx (f (x)− µ)2P(x)

Sample M independent random variables x1, . . . , xM from P(x)

Define FM =
1

M

M∑
i=1

f (xi )

As M increases, FM is normally distributed as
1√
2πσ

e−(x−µ)2/2σ2
M

with a mean µ and variance σ2M = σ2/M

→ Irrespective of the original probability density function



Compare to deterministic integration

Consider 1-dim integral over (a, b) and Mint integration points

If we use for instance Simpson 1/3 rule to perform an integral,

∫ b

a
f (x) dx =

1

3

f (xa) + 4

Mint/2∑
i=1

f (x2i−1) + 2

Mint/2−1∑
i=1

f (x2i ) + f (xb)


+ ϵ(h4)

with ϵ the integration error and

h =
(b − a)

Mint
→ ϵ ∝ 1

M4
int

What about integration on a grid in higher dimensions?



Monte Carlo versus deterministic integration

Integration error ϵ using Mint integration/MMC Monte Carlo points

− Monte Carlo methods

ϵ ∝ 1√
MMC

independent on dimension !

It follows from Central Limit Theorem

→ width of Gaussian decreases as
σ√
MMC

for finite variance

− Deterministic integration methods

1-dim Simpson rule: ϵ ∝ 1

M4
int

d-dim Simpson rule: ϵ ∝ 1

M
4/d
int

← Mint grows as Md
int,1dim



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

. . . for many-body wave functions d = 3Nelec !

Assume that we want to obtain a given error ϵ

− Simpson rule integration (Mint integration points)

ϵ =
c

M
4/d
int

=
c

M
4/3Nelec

int

⇒ Mint =
(c
ϵ

)3Nelec/4
Exponential

− Monte Carlo integration (MMC Monte Carlo samples)

ϵ =
σ√
MMC

= c

√
Nelec

MMC
⇒ MMC =

(c
ϵ

)2
Nelec Linear



Summary of variational Monte Carlo

Expectation value of the Hamiltonian on Ψ

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R)P(R)

EV =

∫
dREL(R)P(R)

σ2 =

∫
dR(EL(R)− EV )

2P(R)

Estimate EV and σ from M independent samples from P(R) as

ĒV =
1

M

M∑
i=1

EL(Ri )

σ̄2 =
1

M − 1

M∑
i=1

(EL(Ri )− ĒV )
2



Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any “computable” wave function if

▷ Continuous, normalizable, proper symmetry

▷ Finite variance

σ2 =
⟨Ψ|(H− EV )

2|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨(EL(R)− EV )
2⟩P

since the Monte Carlo error goes as err(EV ) ∼
σ√
M

Zero variance principle: if Ψ → Ψ0, EL(R) does not fluctuate



Typical VMC run

Example: Local energy and average energy of acetone (C3H6O)

0 500 1000 1500 2000
MC step

-39

-38

-37

-36

-35

-34
E

ne
rg

y 
(H

ar
tr

ee
)

σ VMC

EVMC = ⟨EL(R)⟩P = −36.542± 0.001 Hartree (40×20000 steps)

σVMC = ⟨(EL(R)− EVMC)
2⟩P = 0.90 Hartree



Variational Monte Carlo: To do list

− Method to sample distribution function P(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

→ Obtain a set of {R1,R2, . . . ,RM} distributed as P(R)

How? As in classical Monte Carlo with Metropolis algorithm!

− Build the wave function Ψ(R). Which functional form ?

Here, we spend most of our time, open topic of research

− Compute expectation values
⟨Ψ|O|Ψ⟩
⟨Ψ|Ψ⟩

Reformulate them to reduce fluctuations, open topic of research



How do we sample P(R)?

Generate a Markov chain

. . .
M−−−→ R

M−−−→ R′ M−−−→ R′′ M−−−→ . . .

R

▷ Start from arbitrary initial state Ri

▷ Use M(Rf |Ri) as probability for transition Ri → Rf so that

M(Rf |Ri) ≥ 0 and

∫
dRfM(Rf |Ri) = 1 (stochastic)

▷ Evolve the system by repeated application of M

Starting from an arbitrary distribution Pinit, we want to evolve to P

→ Impose stationarity condition



Stationarity condition

To sample P, use M which satisfies stationarity condition :∫
dRiM(Rf |Ri) P(Ri) = P(Rf) ∀ Rf

▷ Stationarity condition

⇒ If we start with P, we continue to sample P

▷ Stationarity condition + stochastic property of M + ergodicity

⇒ Any initial distribution will evolve to P



More stringent condition

In practice, we impose detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

���

���

Stationarity condition can be obtained by summing over Ri∫
dRiM(Rf |Ri) P(Ri) =

∫
dRiM(Ri|Rf)︸ ︷︷ ︸

1

P(Rf) = P(Rf)

Detailed balance is a sufficient but not necessary condition



How do we construct the transition matrix P in practice?

Metropolis method → Write M as proposal T × acceptance A

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) ���
����

��
����

Let us rewrite the detailed balance condition

M(Rf |Ri) P(Ri) = M(Ri|Rf) P(Rf)

A(Rf |Ri) T (Rf |Ri) P(Ri) = A(Ri|Rf) T (Ri|Rf) P(Rf)

⇒ A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)



Choice of acceptance matrix A (1)

Detailed balance condition is

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

For a given choice of T , infinite choices of A satisfy this equation

Any function A(Rf |Ri) = F

(
T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

)
with

F (x)

F (1/x)
= x and 0 ≤ F (x) ≤ 1

will do the job!



Choice of acceptance matrix A (2)

Original choice by Metropolis et al. maximizes the acceptance

A(Rf |Ri) = min

{
1,

T (Ri|Rf) P(Rf)

T (Rf |Ri) P(Ri)

}

Note: P(R) does not have to be normalized

→ For complicated Ψ we do not know the normalization!

→ P(R) = |Ψ(R)|2

Original Metropolis method ����

Δ"

Symmetric T (Rf |Ri) = 1/∆3N ⇒ A(Rf |Ri) = min

{
1,

P(Rf)

P(Ri)

}



Better choices of proposal matrix T

Sequential correlation ⇒ Meff < M independent observations

Meff =
M

Tcorr
with Tcorr autocorrelation time of desired observable

Aim is to achieve fast evolution and reduce correlation times

Use freedom in choice of T : For example, use available trial Ψ

T (Rf |Ri) = N exp

[
−(Rf − Ri − V(Ri)τ)

2

2τ

]
with V(Ri) =

∇Ψ(Ri)

Ψ(Ri)



Acceptance and Tcorr for the total energy EV

Example: All-electron Be atom with simple wave function

Simple Metropolis

∆ Tcorr Ā

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
0.20 45 0.75

Drift-diffusion transition

τ Tcorr Ā

0.100 13 0.42
0.050 7 0.66
0.020 8 0.87
0.010 14 0.94



Generalized Metropolis algorithm

1. Choose distribution P(R) and proposal matrix T (Rf |Ri)

2. Initialize the configuration Ri

3. Advance the configuration from Ri to R′

a) Sample R′ from T (R′|Ri).

b) Calculate the ratio p =
T (Ri|R′)

T (R′|Ri)

P(R′)

P(Ri)

c) Accept or reject with probability p

Pick a uniformly distributed random number χ ∈ [0, 1]

if χ < p, move accepted → set Rf = R′

if χ > p, move rejected → set Rf = R

4. Throw away first κ configurations of equilibration time

5. Collect the averages



Expectation values in variational Monte Carlo (1)

We compute the expectation value of the Hamiltonian H as

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R)P(R)

= ⟨EL(R)⟩P ≈
1

M

M∑
i=1

EL(Ri )

Note: a) Metropolis method: P does not have to be normalized

→ For complex Ψ we do not know the normalization!

b) If Ψ → eigenfunction, EL(R) does not fluctuate



Expectation values in variational Monte Carlo (2)

The energy is computed by averaging the local energy

EV =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨EL(R)⟩P

The variance of the local energy is given by

σ2 =
⟨Ψ|(H− EV )

2|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨(EL(R)− EV )
2⟩P

The statistical Monte Carlo error goes as err(EV ) ∼
σ√
M

Note: For other operators, substitute H with X


