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A quick reminder: What is electronic structure theory?

A quantum mechanical and first-principle approach

—— Collection of ions + electrons

1l
Only input: Z,, Ng

Work in the Born-Oppenheimer approximation

Solve the Schrodinger equation for the electrons in the ionic field
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Solving the many-electron Schrodinger equation ‘

1 5 1 1

What do we want to compute?‘

Fermionic ground state and low-lying excited states

(Wn|O[Wh)

Evaluate expectation values
(Wa|Wp)

Where is the difficulty?|

Electron-electron interaction — Non-separable



Is there an optimal electronic structure approach?‘

e Density functional theory methods

Large systems but approximate exchange/correlation
Beyond? Green's function approaches

Alternatives?

e Quantum chemistry post-Hartree-Fock methods

Accurate on small-medium systems

— Jungle of approaches: Cl, MCSCF, CC, CASPT2 ...

° ’Quantum Monte Carlo techniques

Stochastic solution of the Schrodinger equation

Accurate correlated calculations for medium-large systems



If you can, use density functional theory!

HUMAN TIME

Wave function methods

Density functional theory
N3

Quantum chemistry Quantum Monte Carlo
> N6 N4

COMPUTATIONAL COST‘




Density functional theory is cheap(er) and powerful but . ..

Many successful stories of DFT + efficient, user-friendly codes

Are we theoreticians out of job? Can anybody do it?

Better posed questions

Is it always a success story?

Do we have a black-box method close to perfection?
In principle | — DFT is correct

BUT Exc[p] unknown functional of the density

— Exc[p] must be approximated

... and sometimes things go wrong



Some open problems‘

Weakly bound, strongly correlated systems, ...

Excitations with charge-transfer/multi-configurational character ...

— Effort in development of exchange-correlation functionals

Libxc - a library of exchange-con

functional theory 2
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Some open problems‘

Weakly bound, strongly correlated systems, ...

Excitations with charge-transfer/multi-configurational character ...

— Effort in development of exchange-correlation functionals

nature > nature communications > articles > article

Article | Open Access | Published: 14 July 2020

Machine learning accurate exchange and correlation
functionals of the electronic density

Sebastian Dick & & Marivi Fernandez-Serra &

Nature Communications 1, Article number: 3509 (2020) | Cite this article
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Abstract

Density functional theory (DFT) is the standard formalism to study the electronic structure
of matter at the atomic scale. In Kohn-Sham DFT simulations, the balance between accuracy
and computational cost depends on the choice of and correlation

which only exists in approximate form. Here, we propose a framework to create density
functionals using supervised machine learning, termed NeuralXC. These machine-learned
functionals are designed to lift the accuracy of baseline functionals towards that provided by
more accurate methods while maintaining their efficiency. We show that the functionals



When DFT has problems — Wave function based methods

Work in the Born-Oppenheimer approximation

Solve the Schrodinger equation for the electrons in the ionic field

1 ) 1 1
R Vit ) 2 iy
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Solve for the wave function of the ‘ interacting electron system ‘

Wave function m where x = (r,0) and 0 = +1




’When DFT has problems — Wave function based methods‘

Wave function W(xy,...,xy) where x = (r,0) and 0 = +1

’Optimal wave functions and the variational theorem‘

V(X, a) with X the space-spin variables and [a] the parameters

Wa)[HW(2) o

B@)="aNGE) ©

E\/(a) = Eo = W(X, a) = \Uo(X)



The variational method and the linear basis approach‘

Wave function as a linear combination of basis functions f,(X)

w(X7 a) = Z anfn(x) = Ev(a) = w

*
n,m anamsnm

where Hppm = (fa|H|fm) and Spm = (f]fm)

dE
Y e £33 =0 = [Fa= B



Linear basis approach — Generalized eigenvalue problem‘

V as a linear combination of many-body functions f,(X)
U= Y a6 =

’ Important properties ‘

> For a basis of size M, 3 M eigenvalues and eigenfunctions

> | McDonald's theorem

EE<E<...<Ey with |EZt<E,




’ Merits and problems of the variational method

Find approximate solution W to Schrodinger equation

> Upper bound is guaranteed
> Linear basis — Generalized eigenvalue problem

> Linear basis — McDonald's theorem for excited states

> How do we compute the matrix elements H,,, and S,,7?
> How do we access convergence?

> What goes in, comes out



How do we compute the matrix elements S,,, and Hnm?‘

Integrals Hpm and S, too slow to perform unless one-particle basis

— Problem which can be solved by | Monte Carlo integration‘

Many-body wave functions in traditional quantum chemistry‘

Interacting W(x1,...,xy) <> Non-interacting basis ¥(x)

VU expanded in determinants of‘single—particle orbitals w(x)‘

Single-particle orbitals expanded in ‘ Gaussian basis‘

= [ All integrals can be computed analytically‘




Determinants as a non-interacting basis‘ (1)

Interested in ‘ interacting electron system ‘ with full Hamiltonian

1 1 1
= -y V2 )=y
H 2: ,+ZVet(r/)+2§’ri_rj|

and wave function m where x = (r,0) and 0 = £1

Much easier problem — | 7=t = h((r) 4+ ..+ A(D(rp)

e.g. Hartree-Fock or Kohn-Sham equations



Determinants as a non-interacting basis‘

If Hron=int — h(D(r) 4 ... A(D(rp), proceed as follows:



Determinants as a non-interacting basis‘

If Hron—int — AN (ry) + ... hM(ry), proceed as follows:
» Solve for one-electron and build spin-orbitals

hD(r1)ei(r) = €idi(r) = i(x) = i(r)xs (o)



Determinants as a non-interacting basis‘

If Hron—int — AN (ry) + ... hM(ry), proceed as follows:
» Solve for one-electron and build spin-orbitals
WO (r)gi(r) = eigi(r) = i(x) = ¢i(r)xs(0)
> Create a product state by occupying N spin-orbitals

wnon—int(xl’ o 7XN) = 1/)1(X1) .. .dJN(XN)

N Hnon—int wnon—int
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Determinants as a non-interacting basis‘ (2)

If Hron—int — AN (ry) + ... hM(ry), proceed as follows:
» Solve for one-electron and build spin-orbitals

hD(r1)ei(r) = €idi(r) = i(x) = i(r)xs (o)

> Create a product state by occupying N spin-orbitals

wnon—int(xl’ o 7XN) = 1/)1(X1) .. .dJN(XN)

N
N Hnon—intwnon—int — (Z €i) \Unon—int
i=1
» Anti-symmetrize as a Slater determinant (non-int solution)

N
D(X]_, e ,XN) = .A{l/J]_(Xl) R wN(XN)} — HnoniintD = ( 6,') D
i=1

1



Determinants as a non-interacting basis‘ (3)

Starting point — Non-interacting Hartree-Fock wave function

¢1(}<1) ?ﬁl(?(/v)

DH];‘(X;[7 e ,XN) =

@DN&Xl) I/JN(.XN)

Optimal spin-orbitals ;(x) = ¢i(r)xs (o) satisfy HF equations

N ()2
—%Vz + Vext (1) + Jz—;/dr' |’¢;J(_ 2,|’ ¢i(r) + [Varoi](r) = €;¢i(r)

= orbitals (¢1...¢n) + orbitals (¢Yng1-..)



Many-body wave functions in traditional quantum chemistry‘ (1)

A jungle of acronyms: Cl, CASSCF, MRCI, CASPT2 ...

Expansion in linear combination of determinants

P1(xy) ... 7/11(?(N)

W(X]_,...,XN) — DHF =

\ /

coDgr + c1D1 + oDy + ... of determinants

d)/\/&xl) QZJN(.XN)

Yi(x1) ... ¢1(?<N)

Ynra(x1) oo Unra(xn)

by constructing single, double, ... up to N-body excitations



’ Many-body wave functions in traditional quantum chemistry‘

of Cl expansion in Slater determinants

Ver = coDur + Z casbD* P+ Z Cabsca D7 4.
ab abcd

Optimal Cl coefficients by solving generalized eigenvalue equation

PN

K K
Vo= oD = | S (DHID)™M = ES) ST (DilDy)e
i=1 j=1

Jj=1

Orbitals on a Gaussian basis — ’ Integrals computed analytically‘

. but | slowly converging expansion ‘




Can we use a more compact W?

We want to construct an accurate and more compact W
Explicit dependence on the inter-electronic distances
How do we compute expectation values if no single-electron basis?

— Real-space Monte Carlo methods in quantum mechanics



’Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrodinger equation

Why (real-space) quantum Monte Carlo?

— Favorable scaling — Energy is m

— Flexibility in choice of functional form of wave function

— Easy parallelization

— Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto Ci3gHag (A|fé 2017)




Monte Carlo methods in general

Approaches which make repeated use of random numbers:

» to simulate truly stochastic events

P to solve | deterministic problems | using probabilities

Very important class of methods in statistical mechanics

— Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations — ‘Quantum Monte Carlo‘




’A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

— Throw darts, compute Acircle, COMpute 7

Throw darts which land randomly within the square

# hits inside circle _ Acircle
# hits inside the square  Agquare
/]\

many, many hits

N



Monte Carlo integration

We want to compute the integral of f(x) in the interval [a, b]

f(x)

a b
| = /f )dx = ( —a/ f(x
= (b=a)(F)ay

where (f), ) is the average of the function in the range [a, b]



’ Monte Carlo integration‘

b 1
(o = [ )5 dx

- / ’ F(x)P(x) dx

1/(b-a)

a

{ P(x)

|

a

Draw M random numbers distributed unformely in [a, b]

A

P(x)

1/(b-a) l
—)(—)(—)MHHJ—» x

a

b

Flab) ~

Mfo,




A less uniform function‘

f(x)

P(x)




Monte Carlo integration in a nutshell‘

b
We want to compute | (A) = / A(x)P(x)
a

b
with| P(x) >0 and / P(x) =1 | < a probability density!
a

Monte Carlo — Sample {xq,...,xpm} from P(x)
LM
Estimate (A) ~ v ZlA(x,-)

efﬁE(X)

Statistical physics: P(x) = >

, the Boltzman distribution




A different way of writing the expectation values

Back to quantum mechanics!

Consider the expectation value of the Hamiltonian on W

_ (VH|W)  [dRV*(R)HV(R) > E

STy T TARVRV(R) ©

HY(R)| _ [W(R)?
V(R) | [ dRIV(R)]?

J
:/dR Er(R) P(R) = (EL(R))p

= [ dR

HW(R)

P(R) is a probability density and E,(R) = W(R)

the local energy



’Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

> Sample R from P(R) using Metropolis algorithm
HV(R)
V(R)

> Average local energy Ep(R) = to obtain Ey as

M
Ev = (EL(R Z
R

%\ Random walk in 3N dimensions, R = (r,...,ry)

Just a to evaluate integrals in many dimensions




Is it really “just” a trick?|

Number of electrons 4 x 21422 =106
Number of dimensions 3 x 106 =

Integral on a grid with 10 points/dimension — 103! points!

MC is a powerful trick = Freedom in form of the wave function W



Monte Carlo integration‘

We want to compute an integral

Ey = /dREL(R)P(R)

M
We sample P(R) — | Ey = (E.(R))p Z

— Does the trick always work?

— How efficient is it?



’The Central Limit Theorem‘

Probability density P and function f with finite mean and variance

— [ axfoPeo — [ ax(f() - 2P

Sample M independent random variables xi, ..., xp from P(x)
1M
Define Fm = o Zl f(xi)

As M increases, Fy, is normally distributed as e~ (—m)?/207,

2o

with a mean [ and variance | 02, = 02 /M

— of the original probability density function




Compare to deterministic integration ‘

Consider 1-dim integral over (a, b) and My, integration points

If we use for instance ‘ Simpson 1/3 rule‘to perform an integral,

b 1 Mint/2 Mint/271
/a f)de = 3 f(xa)+4§f(X2i—1)+2 ; F(xer) + F(xb)

+ e(h?)

with € the integration error and

(b—a) . 1
Mint € M4

int

h =

What about integration on a grid in higher dimensions?



Monte Carlo versus deterministic integration ‘

Integration error € using Miy, integration/Myc Monte Carlo points

— Monte Carlo methods

1 . . .
€ X ———— | independent on dimension !
My
It follows from Central Limit Theorem
. . o . .
— width of Gaussian decreases as ———— for finite variance
v Muic
— Deterministic integration methods
1-dim Simpson rule: € e
int
e _ 1 d
d-dim Simpson rule: | e W < My grows as | My, 4 4im
int




Scaling with number of eIectrons‘

Roughly, Monte Carlo integration advantageous if

... for many-body wave functions !

Assume that we want to obtain a given error ¢

— Simpson rule integration (M, integration points)

C C C 3Nelec/4 ;
€= 27d = " 473N = Mt = (7) Exponential
elec €
Mint Mint

— Monte Carlo integration (Myic Monte Carlo samples)

g N, 1 c\2 .
€= \/W =cC - = Myc = (7) Nelec
MC €

Myic




’Summary of variational Monte Carlo‘

Expectation value of the Hamiltonian on W

b, VIV [ o HVR) V(R)P

(W) V(R) [dR|W(R)P? :/dR EL(R) P(R)

Ey = /dREL(R)P(R)

o’ = /dR(EL(R)—EV)2P(R)

Estimate Ey and o from M independent samples from P(R) as
1M
Ev = M;EL(R,-)

M
1 _
-2 E N\ 2
g - M_ 1 ._l(EL(R/) EV)



Are there any conditions on many-body W to be used in VMC?

Within VMC, we can use any “computable” wave function if

> Continuous, normalizable, proper symmetry

> ’ Finite variance‘

(WI(H — Ev)’|V)

2 2
0" = = ((EL(R) — Ev)")p
(V[v)
ag
since the Monte Carlo error goes as |err(Ey) ~ ——
g ( V) m

Zero variance principle: if W — Wy, Ep,(R) does not fluctuate




Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Oyme

Energy (Hartree)

o 500 1000 1500 2000

Evnvic = (EL(R))p = —36.542 + 0.001 Hartree (40x20000 steps)

ovmc = ((EL(R) — Evac)?)p = 0.90 Hartree



Variational Monte Carlo: To do Iist‘

V(R)|?
— Method to distribution function P(R) = fc‘1R|(\Uzl?)|2

— Obtain a set of {R1,R2,...,Ry} distributed as P(R)

How? As in classical Monte Carlo with Metropolis algorithm!

— Build the wave function W(R). Which | functional form | ?

Here, we spend most of our time, open topic of research

(V|o[v)

— Compute expectation values
(V]w)

Reformulate them to reduce fluctuations, open topic of research



How do we sample P(R)?‘

Generate 2

M

R M

R -M,p M, | \ﬂx
\

> Start from arbitrary initial state R;

> Use M(R¢|R;) as probability for transition R; — Ry so that
M(R¢|R;) >0 and /deI\/I(Rf]Ri) =1 (stochastic)
> Evolve the system by repeated application of M

Starting from an arbitrary distribution Pi,;t, we want to evolve to P

— Impose stationarity condition



Stationarity condition ‘

To sample P, use M which satisfies ’ stationarity condition |

/ dR; M(R¢|R;) P(R;) = P(R) V¥ Ry

> Stationarity condition

= ’ If we start with P, we continue to sample P‘

> Stationarity condition + stochastic property of M + ergodicity

= ’Any initial distribution will evolve to P‘




More stringent condition‘

In practice, we impose ‘ detailed balance‘ condition

[M(R(|R)) P(Ri) = M(Ri[R:) P C D

Stationarity condition can be obtained by summing over R;

/dRiM(Rf|Ri) P(R;) = /dRiM(Ri\Rf) P(R) = P(R;)
S

1

Detailed balance is a sufficient but not necessary condition




How do we construct the transition matrix P in practice?

Metropolis method — Write M as proposal T x acceptance A

T A?
o——0

Ry

| M(R¢|R;) = A(R¢|R;) T (R¢[Ry)

R.

Let us rewrite the detailed balance condition
M(R¢|R;) P(R;) = M(R;|R¢) P(Ry)
A(R¢[Ri) T(R¢[Ri) P(R;) = A(Ri|R¢) T(Ri|R¢) P(Ry)

A(R¢[Ri) _ T(RilRr) P(Ry)
A(Ri|R¢) T(R¢|R;) P(R;)




Choice of acceptance matrix A‘ (1)

Detailed balance condition is

A(R¢[R)) _ T(Ri[Rr) P(Ry)
A(Ri|Ry) T(R¢|R;) P(R;)

For a given choice of T, choices of A satisfy this equation

Any function A(R¢|R;) = F (77:?;1!;;3 I’ZEET;) with

=x and 0<F(x)<1

will do the job!



Choice of acceptance matrix A‘

Original choice by Metropolis et al. maximizes the acceptance

(Ri|R¢) P(R¢)

T
A(R¢|R;) = min {1, =

(R¢|Ri) P(R;)

|

Note: P(R) does not have to be normalized

— For complicated W we do not know the normalization!

— P(R) = [V(R)[?

Original Metropolis method‘

Symmetric T(R¢|R;) = 1/A3" = A(R¢|R;) = min{l,

A

—>

R;
L]




Better choices of proposal matrix T

Sequential correlation = M.y < M independent observations

M
Tcorr

Meff -

with T.opr autocorrelation time of desired observable

is to achieve fast evolution and reduce correlation times

Use in choice of T: For example, use available trial W

(Rf — Ri — V(Ri)T)2
2T

_ VU(R)

T(Rf’Rj) :Nexp — with V(Rl) = \U(R)




Acceptance and T, for the total energy Ey

Example: All-electron Be atom with simple wave function

Simple Metropolis
A T A

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
020 45 0.75

Drift-diffusion transition
T 7—v:orr A

0.100 13 042
0.050 7 0.66
0.020 8 0.87
0.010 14 094



Generalized Metropolis algorithm‘

1. Choose distribution P(R) and proposal matrix T(R¢|R;)
2. Initialize the configuration R;
3. Advance the configuration from R; to R’

a) Sample R’ from T(R’|R;).

T(Ri[R) P(R')

b) Calculate the ratio p = m P(R;)

c) Accept or reject with probability p

Pick a uniformly distributed random number x € [0, 1]
if x < p, move accepted — set Ry = R’
if x > p, move rejected — set Rt =R

4. Throw away first x configurations of equilibration time

5. Collect the averages



Expectation values in variational Monte Carlo

We compute the expectation value of the Hamiltonian H as

g, )
W)
HY(R) [W(R)P

V(R) [dR[W(R)P?
= /dREL(R)P(R)

= dR

= (ER)p~ 4 D ER)

Note: a) Metropolis method: P does not have to be normalized

— For complex W we do not know the normalization!

b) If W — eigenfunction, E;(R) does not fluctuate



Expectation values in variational Monte Carlo

The energy is computed by averaging the local energy

_(VIHV)
Ey = Ty (EL(R))p

The variance of the local energy is given by

2 (WI(H - Ev)*|v)

o = <\U‘\U> = <(EL(R) - EV)2>P

The statistical Monte Carlo error goes as err(Ey/) ~

gl

Note: For other operators, substitute H with X



