VII. (hyper)polarizability within PT VII.A. Basic SOS expressions

$$H(\lambda) = H_0 + \lambda W$$

$$\mathbf{H} = \mathbf{H}_0 - \hat{\vec{\mu}} \vec{E}$$

113

Using time-independent PT, one gets the static polarizability and hyperpolarizability but the generalization to time-dependent PT enables the calculation of the dynamic responses.

$$\tilde{\alpha} = 2\sum_{j\neq 0} \frac{\left| \left\langle \Psi_{j}^{(0)} \middle| \vec{\mu} \middle| \Psi_{0}^{(0)} \right\rangle \right|^{2}}{\left(E_{j}^{(0)} - E_{0}^{(0)} \right)} \qquad \left\langle \Psi_{0}^{(0)} \middle| \mu_{\zeta} \middle| \Psi_{j}^{(0)} \right\rangle = \left\langle \Psi_{0}^{(0)} \middle| - \sum_{i=1}^{N} \zeta_{i} + \sum_{A=1}^{M} Z_{A} \zeta_{A} \middle| \Psi_{j}^{(0)} \right\rangle \\ = \left\langle \Psi_{0}^{(0)} \middle| - \sum_{i=1}^{N} \zeta_{i} \middle| \Psi_{j}^{(0)} \right\rangle \\ = \mu_{\zeta}^{0j,elec} = \mu_{\zeta}^{0j}$$

$$\alpha_{\zeta\eta} = 2 \sum_{j \neq 0} \frac{\mu_{\zeta}^{0j} \mu_{\eta}^{j0}}{\mathsf{E}_{j} - \mathsf{E}_{0}}$$

$$\vec{\vec{\beta}} = 6 \sum_{j \neq 0} \sum_{k \neq 0} \frac{\left\langle \Psi_{0}^{(0)} \middle| \vec{\mu} \middle| \Psi_{j}^{(0)} \right\rangle \overline{\left\langle \Psi_{j}^{(0)} \middle| \vec{\mu} \middle| \Psi_{k}^{(0)} \right\rangle} \overline{\left\langle \Psi_{k}^{(0)} \middle| \vec{\mu} \middle| \Psi_{0}^{(0)} \right\rangle}}{\left(\mathsf{E}_{j}^{(0)} - \mathsf{E}_{0}^{(0)} \right) \left(\mathsf{E}_{k}^{(0)} - \mathsf{E}_{0}^{(0)} \right)}$$

$$\overline{\left\langle \Psi_{j}^{(0)} \middle| \vec{\mu} \middle| \Psi_{k}^{(0)} \right\rangle} = \left\langle \Psi_{j}^{(0)} \middle| \vec{\mu} \middle| \Psi_{k}^{(0)} \right\rangle - \left\langle \Psi_{0}^{(0)} \middle| \vec{\mu} \middle| \Psi_{0}^{(0)} \right\rangle \delta_{jk}$$

Two-state approximation for the diagonal elements

$$\alpha_{\zeta\zeta} = 2 \frac{\mu_{\zeta}^{0j} \mu_{\zeta}^{j0}}{\Delta E_{j0}}$$
$$\beta_{\zeta\zeta\zeta} = 6 \frac{\mu_{\zeta}^{0j} \left(\mu_{\zeta}^{jj} - \mu_{\zeta}^{00}\right) \mu_{\zeta}^{j0}}{\Delta E_{j0}^{2}} = 6 \frac{\mu_{\zeta}^{0j} \Delta \mu_{\zeta}^{0j} \mu_{\zeta}^{j0}}{\Delta E_{j0}^{2}}$$

VII.B. SOS/CI expressions

CIS $\mu^{03} = 2.0723$ $\Delta E_{03} = 5.159 \text{ eV} = 0.1896 \text{ a.u.}$ α_{zz} (TSA) = 45.3 a.u.

CIS(D) $\Delta E_{03} = 4.453 \text{ eV} = 0.1636 \text{ a.u.}$ α_{zz} (TSA) = 52.5 a.u.

NB: not a good approximation because many states contribute to the polarizability

$$\beta_{\zeta\zeta\zeta} = 6 \frac{\mu_{\zeta}^{0j} \left(\mu_{\zeta}^{jj} - \mu_{\zeta}^{00}\right) \mu_{\zeta}^{j0}}{\Delta E_{j0}^2} = 6 \frac{\mu_{\zeta}^{0j} \Delta \mu_{\zeta}^{0j} \mu_{\zeta}^{j0}}{\Delta E_{j0}^2}$$

CIS/6-31G $\mu^{03} = 2.0723 \text{ a.u.}$ $(\mu^{33} - \mu^{00}) = 2.024 \text{ a.u.}$ $\Delta E_{03} = 5.159 \text{ eV} = 0.1896 \text{ a.u.}$ β_{zzz} (TSA) = 1451 a.u.

CIS(D)/6-31G

 $\Delta E_{03} = 4.453 \text{ eV} = 0.1636 \text{ a.u.}$ β_{zzz} (TSA) = 1949 a.u.

$$\beta_{\zeta\zeta\zeta} = 6 \frac{\mu_{\zeta}^{03} \left(\mu_{\zeta}^{33} - \mu_{\zeta}^{00}\right) \mu_{\zeta}^{30}}{\Delta E_{30}^2} + 6 \frac{\mu_{\zeta}^{06} \left(\mu_{\zeta}^{66} - \mu_{\zeta}^{00}\right) \mu_{\zeta}^{60}}{\Delta E_{60}^2} + 12 \frac{\mu_{\zeta}^{03} \mu_{\zeta}^{36} \mu_{\zeta}^{60}}{\Delta E_{30} \Delta E_{60}}$$

CIS/6-31G

$$\mu^{03} = 2.072 \text{ a.u.}$$

 $(\mu^{33} - \mu^{00}) = 2.024 \text{ a.u.}$
 $\Delta E_{03} = 5.159 \text{ eV} = 0.1896 \text{ a.u.}$
 $\mu^{06} = 1.198 \text{ a.u.}$
 $(\mu^{66} - \mu^{00}) = 0.574 \text{ a.u.}$
 $\Delta E_{06} = 7.265 \text{ eV} = 0.2670 \text{ a.u.}$
 $\mu^{36} = 1.814 \text{ a.u.}$

 β_{zzz} (Three-SA) = 1451 a.u. + 69 a.u. + 1067 a.u. = 2587 a.u.

VII.C. Variations on the SOS expressions

The general SOS Orr-Ward-Bishop expression of the electronic (dynamic) first hyperpolarizability reads

$$\beta_{\zeta\eta\xi}(-\omega_{\sigma};\omega_{1},\omega_{2}) = \sum \mathsf{P}_{\substack{\sigma=\sigma,1,2\\m\neq0}} \sum_{\substack{n\neq0\\m\neq0}} \frac{\mu_{0n}^{\zeta} \,\overline{\mu}_{nm}^{\eta} \,\mu_{m0}^{\xi}}{\left(\mathsf{E}_{n0} - \omega_{\sigma}\right) \left(\mathsf{E}_{m0} - \omega_{2}\right)}$$

For any diagonal component the OWB expression becomes

$$\beta_{xxx}(-\omega_{\sigma};\omega_{1},\omega_{2}) = \sum P_{-\sigma,1,2} \sum_{n}^{\infty} \frac{\mu_{0n}^{x} \Delta \mu_{n0}^{x} \mu_{n0}^{x}}{E_{n0}(\omega_{\sigma}) E_{n0}(\omega_{2})} + \sum P_{-\sigma,1,2} \sum_{n}^{\infty} \sum_{m\neq 0}^{\infty} \frac{\mu_{0n}^{x} \mu_{nm}^{x} \mu_{m0}^{x}}{E_{n0}(\omega_{\sigma}) E_{m0}(\omega_{2})}$$

dipolar octupolar

Using the Thomas-Kuhn sum rules for $m \neq p$,

the dipolar term can be rewritten:

$$\beta_{xxx}(-\omega_{\sigma};\omega_{1},\omega_{2}) = \sum P_{-\sigma,1,2} \sum_{n}^{\infty} \sum_{m\neq n}^{\infty} \frac{\mu_{0n}^{x} \mu_{nm}^{x} \mu_{m0}^{x}}{E_{n0}(\omega_{\sigma}) E_{m0}(\omega_{2})} \left[1 - \frac{E_{m0}(\omega_{2})(2E_{m0} - E_{n0})}{E_{n0}E_{n0}(\omega_{2})} \right]$$

The OWB and the dipolar-free equations are equivalent provided:

* exact solutions of the Schrödinger equation are used
* the summations (n, m) are carried out up to infinity

This is generally not the case.

M.G. Kuzyk, Phys. Rev. A 72, 053819 (2005).

SOS/CIS(D) data

Before ordering (the state ordering is given by the increasing excitation energy)

After ordering as a function of the state contribution to β_{zzz} .

The contributions to the OWB and dipolar-free expressions are essentially of the same magnitude but opposite sign.

B. Champagne and B. Kirtman, J. Chem. Phys. 125, 024101 (2006).

VIII. Illustrations VIII.A. shape effects on β

1. Linear "dipolar" molecules

(E,E) 1-(benzeneamine 4-(di-2-propylamino)) pentadieneylidene thiobarbituric, Bourhill *et al.* (1993)

2) Octupolar systems

3) Λ - or V-shape systems

The interest for these systems is mostly due to the presence of two dominant microscopic first hyperpolarizability components (β_{xxz} and β_{zzz}) of which the relative amplitude (η) is governed by the 2 θ angle as well as by the charge transfer character (l, determined by the nature of the D/A pair). Using a 3 states (1VB + 2 CT) model, the ratio reads:

 $2\theta = 120^{\circ}$

 $2\theta = 60^{\circ}$

$$\beta_{xxz} = \beta_{xxz}^{D} + \beta_{xxz}^{TP} \qquad \beta_{zzz}^{D} = 12\ell(1-2\ell)(1-4\ell)\mu^{3}\left(\frac{1}{E_{02}^{2}}\right)\cos^{3}\theta \\ = 4\ell(1-2\ell)\mu^{3}\left(\frac{1}{E_{01}^{2}} + \frac{2}{E_{01}E_{02}}\right)\sin^{2}\theta\cos\theta$$

$$(1-2\ell)\mu^{3}\left(\frac{1}{E_{01}^{2}} + \frac{2}{E_{01}E_{02}}\right)\sin^{2}\theta\cos\theta$$

$$(1-2\ell)\mu^{3}\left(\frac{1}{E_{01}^{2}} + \frac{2}{E_{01}E_{02}}\right)\sin^{2}\theta\cos\theta$$

$$(1-2\ell)\mu^{3}\left(\frac{1}{E_{01}^{2}} + \frac{2}{E_{01}E_{02}}\right)\sin^{2}\theta\cos\theta$$

$$(1-2\ell)\mu^{3}\left(\frac{1}{E_{01}^{2}} + \frac{2}{E_{01}E_{02}}\right)\sin^{2}\theta\cos\theta$$

4) Helical

	$\frac{s}{s}$	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S	Me ₃ Si O ₂ N S	5	S S CN S S CN S S CN S S CN
μβ _{//} (10 ⁻⁴⁸ Experime	esu) ent /	120	197	130	180	230

Experiment	/	120	197	130	180	230
Theory	0.1	21	103	52	57	94

• $\mu\beta_{//}$ of **1** is negligible

• $\mu\beta_{//}$ increases when going

from 2 to 3 (stronger acceptor)
from 5 to 6 (better acceptor)
from 2 to 5 (mono- versus di-substituted)

• there is a good qualitative agreement between theory and experiment $\frac{128}{128}$

Pyridine-pyrimidine strands TDHF/AM1

M. Ohkita, J.M. Lehn, G. Bauum, and D. Fenske, Chem. Eur. J. 5, 3471 (1999).

129

VIII. Illustrations VIII.B. Molecular switches

- commute between two or more different forms
- present different properties
- the contrast of properties can be used as a signal revealing the presence of an analyte, a change of the surrounding, ...
- often based on a change of color (linear response) but here we concentrate on the second-order NLO response
- the variety of stimuli is broad: pH, P, T, hv, ions, ...

B.L. Feringa, Molecular Switches, Wiley-VCH, Weinheim, 2001.

L. Sanguinet et al., J. Phys. Chem. 109, 11139 (2005); 110, 10672 (2006).

	indolino	benzimidazolo	benzothiazolo
CPHF/6-31G*	2192 (4.30)	1949 (4.53)	2684 (4.48)
TDHF/6-31G* [$\lambda = 1064 \text{ nm}$]	4437 (4.61)	3599 (4.73)	5841 (4.76)
MP2/6-31G*	4112 (4.68)	4412 (4.85)	5479 (4.78)
MP2/6-31G* [$\lambda = 1064$ nm] [#]	8323	8147	11924
CPHF/6-311G*	2155 (4.28)	1939 (4.52)	2648 (4.47)
TDHF/6-311G* [$\lambda = 1064 \text{ nm}$]	4383 (4.60)	3623 (4.72)	5801 (4.75)
CPHF/6-31+G*	2296 (4.39)	2058 (4.65)	2811 (4.56)
TDHF/6-31+G* [$\lambda = 1064 \text{ nm}$]	4678 (4.66)	3853 (4.80)	6204 (4.80)

[#] $\beta_{\text{MP2}}(-2\omega;\omega,\omega) \approx \beta_{\text{MP2}}(0;0,0) \times \frac{\beta_{\text{TDHF}}(-2\omega;\omega,\omega)}{\beta_{\text{CPHF}}(0;0,0)}$

	indolino	benzimidazolo	benzothiazolo
Theory β MP2/6-31G* [λ = 1064 nm] β MP2/6-31G* [λ = ∞ , acetonitrile]	8323 9704	8147 7052	11924 12107
Experiment (acetonitrile) λ_{max} (nm) β at λ = 1064 nm β at λ = ∞ (Γ = 500 cm ⁻¹) #	544 117800 9500	401 27500 10600	523 184000 17200

$${}^{\#}\frac{\beta(-2\omega;\omega,\omega)}{\beta(0;0,0)} = \frac{\omega_{ge}^{2}(\omega_{ge} - i\gamma)^{2}}{\left(\left[\omega_{ge} - i\gamma\right]^{2} - 4\omega^{2}\right)\left(\left[\omega_{ge} - i\gamma\right]^{2} - \omega^{2}\right)}$$

Extracting static β from dynamic β remains a difficult issue.

Extracting static β from dynamic β remains a difficult issue.

Two-state approximation (γ from experimental HWHM)

$$\frac{\beta_{\zeta\zeta\zeta}(-2\omega;\omega,\omega)}{\beta_{\zeta\zeta\zeta}(0;0,0)} = F(\omega,\omega_{ge},\gamma) = \frac{\omega_{ge}^2(\omega_{ge}-i\gamma)^2}{\left(\left[\omega_{ge}-i\gamma\right]^2-4\omega^2\right)\left(\left[\omega_{ge}-i\gamma\right]^2-\omega^2\right)}$$

+ inhomogeneous damping (based on the absorption spectrum, through the dispersion factors, which implicitly contains information on the distribution of the transition frequencies)

$$\left|\frac{\beta^{HRS}(-2\omega;\omega,\omega)}{\beta^{HRS}(0;0,0)}\right| = \left\{\int N(\omega'_{ge}) \left|F(\omega,\omega'_{ge},\gamma)\right|^2 d\omega'_{ge}\right\}^{1/2}$$

vibronic structure

$$N(\omega_{ge}') = \sum_{n}^{vib.\ levels} \left[\frac{S^{n}e^{-S}}{n!}\right] e^{-\left[\left(\omega_{ge}'-\omega_{n}\right)/\gamma_{vib}\right]^{2}}$$

The parameters are obtained by fitting the UV/visible absorption spectra and are then used to get the static first hyperpolarizability.

VIII. Illustrations VIII.C. γ of diradical species

The first diradical was prepared by Thiele and Balhorn in 1904 [In fact, this is not a true diradical but rather a diradicaloïd presenting some diradical character]

J. Thiele and H. Balhorn, Ber. Dtsch. Chem. Ges. 37, 1463 (1904).

The first stable diradicals were prepared in 1915. They have a specific structure where the substituents bearing the unpaired electrons are in *meta* position.

W. Schlenk and M. Brauns, Ber. Dtsch. Chem. Ges. 48, 661 (1915).

Coupling between the unpaired electrons

$$2J = {}^{1}E_{1g} - {}^{3}E_{1u}$$

2J/k = -104 K

Singlet

2J/k = 36K

Triplet

Small singlet-triplet gap, allowing for spin control and design of molecular switches sensitive to temperature

D.A. Dougherty, Acc. Chem. Res. 24, 88 (1991).

Moreover, compounds with intermediate diradical character can exhibit substantial second hyperpolarizabilities

Diphenalenyl-based compounds (synthesized by T. Kubo *et al.*) large two-photon absorption : TPA, *Im*[γ(-ω; ω, -ω, ω)]

K. Kamada et al., Angew. Chem. Int. Ed. 46, 3544 (2007).

1,4-bis-(4,5-diphenylimidazol-2-ylidene)-cyclohexa-2,5-diene large third harmonic generation : THG, γ(-3ω; ω, ω, ω)

H. Kishida *et al.*, Thin Solid Films **519**, 1028 (2010).

How to achieve substantial second hyperpolarizabilities (and the corresponding third-order nonlinear susceptibilities) ?

A) increasing the conjugation alongthe chain (CPHF)B) placing donor/acceptor substituents

Broader interest of NLO for open-shell systems.

when elaborating molecular electrochemical switches (at least one of the form is open-shell) [I. Asselberghs *et al.*, Chem. Phys. Lett. 368, 408 (2003)]

Fig. 5. Electrochemical switching of the HRS response between 1 and $[1]^+$ in CH₂Cl₂ (concentration 4.3×10^{-5} M). The solid line represents the HRS response for 1, and then alternately oxidizing and reducing.

Fig. 1. Plot of hyper-Rayleigh scattering intensity versus the number density of radicals 8 in CH_2Cl_2 at room temperature. The curves in solid line represent the theoretical fit to equation (see text) obtained from the experimental data points.

• experiments have already been carried out for such species [I. Ratera *et al.*, Chem. Phys. Lett. **363**, 245 (2002).]

How to calculate the second hyperpolarizabilities of diradicals ?

Model system: p-quinodimethane (PQM)

At equilibrium geometry, PQM presents some diradical character.

The external CC bonds are stretched so as to scan the diradical character domain ranging from 0 (closed-shell) to 1 (pure diradical, no interaction).

M. Nakano et al., J. Phys. Chem. A 109, 885 (2005).

The diradical character value, *y*, is the weight of the doubly-excited configuration in the MCSCF theory.

It is evaluated using Yamaguchi's expression, *i.e.* within spin-projected UHF theory

$$y_i = 1 - \frac{2T_i}{1 + T_i^2}$$

using the occupation numbers of the corresponding UHF natural orbitals

$$T_{i} = \frac{\eta_{HOMO-i} - \eta_{LUMO+i}}{2}$$

K. Yamaguchi, in Self-Consistent Field Theory and Applications, edited by R. Carbo and M. Klobukowski (Elsevier, 1990) p. 727.

Choice of method: electron correlation and spin contamination effects

Second hyperpolarizability calculations

- Static
- Finite field method → 4th order numerical derivative of the energy
- electric field amplitudes of the order of 10⁻³ a.u.
- interpreted using hyperpolarizability densities

$$\gamma = -\frac{1}{3!} \int r \rho^{(3)}(\mathbf{r}) d^3 \mathbf{r} \qquad \rho^{(3)}(\mathbf{r}) = \frac{\partial^3 \rho}{\partial F^3} \bigg|_{\mathbf{F}=0}$$

Reference method: UCCSD(T) Basis set: 6-31G(d) + *p* diffuse function

Substantial enhancement in the intermediate y region

$${}^{LS}E_{APUMP2} = {}^{LS}E_{UMP2} + f_{SC}[{}^{LS}E_{UMP2} - {}^{HS}E_{UMP2}]$$
$$f_{SC} = \frac{{}^{LS}\langle S^{2} \rangle_{UHF X} - s(s+1)}{{}^{HS}\langle S^{2} \rangle_{UHF X} - {}^{LS}\langle S^{2} \rangle_{UHF X}}$$

Why is γ so large for intermediate diradical character ?

VB-VCI approach has recently been used to rationalize the dependence of γ on the diradical character

Two localized natural orbitals a and b, assumed orthogonal. The M_S = 0 state solutions are obtained by diagonalizing

$$\begin{array}{l} \begin{pmatrix} 0 & K_{ab} & t_{ab} & t_{ab} \\ K_{ab} & 0 & t_{ab} & t_{ab} \\ t_{ab} & t_{ab} & U & K_{ab} \\ t_{ab} & t_{ab} & K_{ab} & U \end{pmatrix} \\ \hline \\ K_{ab} = exchange integral --> r_{K} = K_{ab}/U \\ t_{ab} = transfer matrix --> r_{t} = |t_{ab}|/U \\ 2J = {}^{1}E_{1g} - {}^{3}E_{1u} = 2K_{ab} + \frac{U - \sqrt{U^{2} + 16t_{ab}^{2}}}{2} \quad r_{J} = 2J/U \end{array} \begin{array}{c} \textbf{3-(singlet)-state model} \\ \textbf{ionic} & |S_{2g}\rangle \\ \textbf{ionic} & |S_{1u}\rangle \\ \textbf{neutral} & |S_{1g}\rangle \\ \textbf{151} \end{array}$$

$$\gamma = \gamma^{\mathrm{II}} + \gamma^{\mathrm{III-2}} = -4 \frac{(\mu_{S_{1g},S_{1u}})^4}{(E_{S_{1u},S_{1g}})^3} + 4 \frac{(\mu_{S_{1g},S_{1u}})^2 (\mu_{S_{1u},S_{2g}})^2}{(E_{S_{1u},S_{1g}})^2 E_{S_{2g},S_{1g}}}$$

M. Nakano et al., Phys. Rev. Lett. 99, 033001 (2007).

Predictive character of the method starting from optical properties

 y
 γ (10⁴ au)
 y
 γ (10⁴ au)

 Full BHandHLYP
 0.77
 228
 0.92
 47

VCI parameters 0.54 399 0.83 55 from CAS(2,2) calculations

$$2J = {}^{1}E_{1g} - {}^{3}E_{1u} = 2K_{ab} + \frac{U - \sqrt{U^{2} + 16t_{ab}^{2}}}{2} \qquad E_{S_{1u},S_{1g}} = {}^{1}E_{1u} - {}^{1}E_{1g} = U(1 - r_{J}) = \frac{U}{2}\left(1 - 2r_{K} + \frac{1}{\sqrt{1 - q^{2}}}\right),$$
155

The diradical character can be related to excitation energies

K. Kamada et al., J. Phys. Chem. Lett. 1, 937 (2010). 156