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Chapter 1

General Introduction

In recent years multi-dimensional optical spectroscopies have been applied to unravel the

structure and dynamics of complex systems. The observed spectra in these spectrocopies

are often congested and difficult to interpret. Therefore, theoretical developments have been

crucial. In these lecture notes the basic theory needed to describe and understand multi-

dimensional spectra is given.

1.1 Multi dimensional spectroscopy

Experimentally the interactions and dynamics in complex systems manifest themself in various

types of traditional one-dimensional spectroscopies (as Nuclear Magnetic Resonance (NMR),

Infrared spectroscopy (IR), Raman spectroscopy etc.). Phenomena such as line broadening

and spectral shifts of the spectra contain information on both the dynamics and intermolec-

ular interactions. However, the information obtained in this way is not very clear, since

different physical phenomena give rise to very similar effects in the observed response. More

information can be obtained using multi-dimensional spectroscopies.

In 1950 the NMR spin echo experiment for the first time allowed the determination of

different line broadening mechanisms. [2] With two sets of radio frequency pulses it was

possible first to induce Larmor precession of the nuclear spins with their individual Larmor

frequencies and later revert the precession to produce a spin echo. In this way it was possible

to distinguish beween line broadening caused by slightly different Lamor frequencies due to

different static environments around the nuclei and line broadening caused by interactions

and motion on a timescale faster than the precession. This was the first example of a two-

dimensional spectroscopy and developments in two-dimensional NMR now allows techniques

with names such as COSY and NOESY to study complicated structures as those of proteins

and even following protein folding processes on µs time scales. [3–5]

Theoretically, Feynman and coworkers showed that the concepts of NMR can be transfered



1 General Introduction

to optical spectroscopies. [6] This leads to the photon echo experiment, [7] which in particular

with the use of two color pulses allows a full analysis of the optical dynamics analogous to

that of two-dimensional NMR techniques. [8, 9] In 1993 Tanimura and Mukamel suggested

the use of 2D Raman response to resolve the low frequency modes found in liquids [10]

and a lot of effort was put into measuring this response. Both one- and two-dimensional

response will be treated from a theoretical point of view in these notes. In recent years both

two-dimensional versions of IR [11–13] , Raman [14, 15] and visual spectroscopy [16] were

developed. The advantage of these methods is that they are able to probe motion on a much

shorter timescales than NMR. The different nature of the methods means that they probe

different kinds of motion and structural dynamics and hence the various multi-dimensional

spectroscopies should rather been seen as complementing each other than competing. Pump-

probe spectra [17] contain a subset of the information provided in the two-dimensional spectra

and can be described by the same theoretical tools.

1.2 Suggested litterature

So far no real books exist on multi-dimensional spectroscopy. However, a few useful texts

covering the underlying non-linear optics does exist. The ”Bible” is Principles of Nonlinear

Optical Spectroscopy by Shaul Mukamel [18]. A supposedly more easily accessible text is the

lecture notes Principles of Nonlinear Optical Spectroscopy: A Practical Approach also known

as Mukamel of Dummies by Peter Hamm. Nonlinear Optics by Robert W. Boyd [19] is a

useful book as well. There exist a number of review papers on multi-dimensional spectroscopy

[20–24] and a complete issue of Accounts of Chemical Research is dedicated to this type of

spectroscopy (Issue 9, 2009).

1.3 Outline

The remainder of these lecture notes is organized as follows. In Chapter 2 time-dependent

perturbation theory is used to derive the response functions governing multi-dimensional spec-

troscopies and the double sided Feynman diagrams connected with these response functions

will be discussed. In Chapter 3 the theory of the most common multi-dimensional spec-

troscopies will be discussed. A general method for simulating spectra will be described in

Chapter 4.

1.4 Acknowledgement

I would like to thank Gerrit Groenenboom organizing the Han-sur-Lesse school for inviting

me to give these lectures. I would also like to thank my ph.-d. supervisor Jaap G. Snijders,
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Chapter 2

Time-dependent perturbation

theory

In this Chapter we will apply time-dependent perturbation theory to derive response functions

that govern multi-dimensional spectroscopy.

2.1 Solving the Schrödinger equation

When considering a quantum system that is changing in time we need to solve the time-

dependent Schrödinger equation:

dφ(t)

dt
= −

i

~
H(t)φ(t). (2.1)

The state of our system is determined by the time-dependent wavefunction φ(t) and the evo-

lution is determined by the time-dependent Hamiltonian H(t). In a spectroscopy experiment

the Hamiltonian can typically be divided into two part. The first part describe the system

when it is not interacting with the applied light and is therefore typically time-independent.

The other part governs the perturbation arising from the interaction between the system and

the applied light, which is time-dependent. We denote these two parts of the Hamiltonian H0

and HP (t) respectively.

The time-evolution of the state of a system with a time-independent Hamiltonian is trivial

and given by

φ(t) = exp

(

−
i

~
H0(t − t0)

)

φ(t0), (2.2)

where t0 is the initial time and t is the final time. The exponential operator is denoted the

time-evolution operator

U(t, t0) ≡ exp

(

−
i

~
H0(t − t0)

)

. (2.3)



2 Time-dependent perturbation theory

For simplicity one can define a transformation from the original wavefunctions and operators

(the Schrödinger picture) to a set where the trivial time-independent Hamiltonian is hidden in

the operators (the interaction picture). The interaction picture makes the derivations shorter.

The wavefunctions in the interaction picture are:

φI(t) = exp

(

i

~
H0(t − t0)

)

φ(t) = U †(t, t0)φ(t) = φ(t0). (2.4)

The operators in the interaction picture are given by:

ΩI(t) = exp

(

i

~
H0(t − t0)

)

Ω(t) exp

(

−
i

~
H0(t − t0)

)

. (2.5)

In the absence of time-dependent perturbation the wavefunction is therefore time-independent.

In this case the interaction picture coincides with the so-called Heisenberg picture, where the

wavefunction is constant and the time-dependence is in the operators.

The Schrödinger equation in the interaction picture reads:

dφI(t)

dt
= −

i

~
HI

P (t)φI(t). (2.6)

The only change in the wavefunction arise from the time dependent perturbation.

We will consider perturbations arising from interactions with an external electric field,

~E(t). In general the interaction between a system and an external electric field is given by

an expansion in this field:

HI
P (t) = ~µI · ~E(t) + α

I
: ~E(t)~E(t) + · · · . (2.7)

Here ~µ is the transition dipole vector and α is the transition polarizability tensor. Higher-order

transition polarizabilities exist. These are in general not useful, but give rise to spectroscopic

artifacts. The transition dipoles are typically connected with normal absorption spectroscopy

and the transition polarizabilities with Raman spectroscopy. In the remainder of this Chapter

we will assume that we are dealing with a type of spectroscopy, where we only need to account

for the transition dipoles.

The time-dependent Schrödinger equation (Eq. (2.6)) can be rewritten as

φI(t) = φI(t0) −
i

~

∫ t

t0

dτ1H
I
P (τ1)φI(τ1). (2.8)

It can now be solved in an iterative manner by plugging it into itself. To second order we get:

φI(t) = φI(t0) −
i

~

∫ t

t0

dτ1H
I
P (τ1)φI(t0) +

(

−
i

~

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1H
I
P (τ2)H

I
P (τ1)φI(τ1). (2.9)

To the mth-order the solution is:

φI(t) = φI(t0) +

m−1
∑

n=1

(

−
i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·

∫ τ2

t0

dτ1H
I
P (τn)HI

P (τn−1) · · ·H
I
P (τ1)φI(t0)

+

(

−
i

~

)m ∫ t

t0

dτm

∫ τm

t0

dτm−1 · · ·

∫ τ2

t0

dτ1H
I
P (τm)HI

P (τm−1) · · ·H
I
P (τ1)φI(τ1) (2.10)

6



2.2 Calculating observables

In the case of transition dipole interactions the nth-order term corresponds to the wavefunction

of a system that has interacted n times with the external electric field. For simplicity this

nth-order can be written:

φ
(n)
I (t) =

(

−
i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·

∫ τ2

t0

dτ1H
I
P (τn)HI

P (τn−1) · · ·H
I
P (τ1)φI(t0). (2.11)

This result can be transformed back to the usual Schrödinger picture by applying the reverse

transformation

φ(n)(t) = exp

(

−
i

~
H0(t − t0)

)

φ
(n)
I (t) = U(t, t0)φ

(n)
I (t). (2.12)

2.2 Calculating observables

The time-dependence of an experimental observation is given by the expectation value of the

corresponding operator Ω:

〈Ω〉(t) = 〈φI |ΩI(t)|φI〉 = 〈φ(t)|Ω|φ(t)〉 (2.13)

We will be interested in optical observables in particular the polarization, because an oscil-

lating polarization will generate an electric field that we can measure as emitted light from

the sample. The macroscopic polarization induced by external perturbations can be written

in a an expansion of the power dependence

P = ǫ0(χ
(1)E + χ(2)E2 + χ(3)E3 + · · · ). (2.14)

Here χ(1) is the linear susceptibility and χ(2) and χ(3) are higher-order nonlinear suscepti-

bilities. The electric fields are in fact vectors as is the polarization and the susceptibilities

are tensors. The cartesian components denoted a through d can be used for the proper

bookkeeping assuming implicit (Einstein) summation over these

Pa = ǫ0(χ
(1)
ab Eb + χ

(2)
abcEbEc + χ

(3)
abcdEbEcEd + · · · ). (2.15)

In centrosymmetric systems, such as isotropic media, the even-order susceptibilities vanish due

to the symmetry. These transform with an odd-order of the cartesian coordinates, which in

centrosymmetric systems never belong to the total symmetric irreducible representation [19].

Or in other words, the polarization in systems with such symmetry must change sign when

the optical electric fields are reversed and therefore the polarization generated by an even

power of the electric field must vanish.

The macroscopic polarization is given by the ensemble average of the expectation value

of the transition dipole

P (t) = 〈〈φ(t)|µ|φ(t)〉〉E , (2.16)

7



2 Time-dependent perturbation theory

where 〈· · · 〉E denote the ensemble average. To distinguish the order dependence of the electric

field it is useful to define the nth-order polarization which arise from n interactions with the

external electric field.

P (n)(t) =
m=n
∑

m=0

〈〈φ(n−m)(t)|µ|φ(m)(t)〉〉E (2.17)

Introducing separate numbering of the times in the bra (τB) and the ket (τK) side the

wavefunctions can be explicitly written

P (n)(t) =

m=n
∑

m=0

(

i

~

)n−m(

−
i

~

)m ∫ t

t0

dτB
n−m

∫ τB
n−m

t0

dτB
n−m−1 · · ·

∫ τB
2

t0

dτL
1

∫ t

t0

dτK
m

∫ τK
m

t0

dτK
m−1 · · ·

∫ τK
2

t0

dτK
1

〈〈φI(t0)|H
I
P (τB

1 ) · · ·HI
P (τB

n−m−1)H
I
P (τB

n−m)µ(t)HI
P (τK

m )HI
P (τK

m−1) · · ·H
I
P (τK

1 )|φI(t0)〉〉E .

(2.18)

Assuming that HI
P (t) = µI · E(t) we get

P (n)(t) =
m=n
∑

m=0

(

i

~

)n−m(

−
i

~

)m ∫ t

t0

dτB
n−m

∫ τB
n−m

t0

dτB
n−m−1 · · ·

∫ τB
2

t0

dτB
1

∫ t

t0

dτK
m

∫ τK
m

t0

dτK
m−1 · · ·

∫ τK
2

t0

dτK
1

〈〈φI(t0)|µ
I(τB

1 ) · · ·µI(τB
n−m−1)µ

I(τB
n−m)µI(t)µI(τK

m )µI(τK
m−1) · · · µ

I(τK
1 )|φI(t0)〉〉E .

E(τB
1 ) · · ·E(τB

n−m−1)E(τB
n−m)E(τK

m )E(τK
m−1) · · ·E(τK

1 ) (2.19)

Or equivalently in the Schrödinger picture using that U(t1, t2) = U †(t2, t1) and U(t, t0)U(t0, t2) =

U(t1, t2)

P (n)(t) =

m=n
∑

m=0

(

i

~

)n−m(

−
i

~

)m ∫ t

t0

dτB
n−m

∫ τB
n−m

t0

dτB
n−m−1 · · ·

∫ τB
2

t0

dτB
1

∫ t

t0

dτK
m

∫ τK
m

t0

dτK
m−1 · · ·

∫ τK
2

t0

dτK
1

〈〈φ(t0)|U(t0, τ
B
1 )µ(τB

1 ) · · · µ(τB
n−m−1)U(τB

n−m−1, τ
B
n−m)µ(τB

n−m)U(τB
n−m, t)µ(t)

U(t, τK
m )µ(τK

m )U(τK
m , τK

m−1)µ(τK
m−1) · · ·µ(τK

1 )U(τK
1 , t0)|φ(t0)〉〉E .

E(τB
1 ) · · ·E(τB

n−m−1)E(τB
n−m)E(τK

m )E(τK
m−1) · · ·E(τK

1 ) (2.20)

2.3 Feynman diagrams and response functions

Since the polarization might depend on electric fields applied at different times it is useful

to define response functions that contain the information about what the polarization is

8



2.3 Feynman diagrams and response functions

given that the interaction with the electric fields took place at specific times. The nth-order

polarization generated by interactions with external electric fields separated by the time delays

t1 to tn is then

P (n)(t, tn, · · · , t1) = S(n)(tn, tn−1, · · · , t1)E(t−tn)E(t−tn−tn−1) · · ·E(t−tn−tn−1−· · ·−t1).(2.21)

Here the S(tn, tn−1, · · · , t1) is the response function. In simulations and thought experiments

we can easily control when interactions with the external electric field can take place. We

just assume that we apply a field that only has a value at very specific times. In practical

experiments one can produce very short laser pulses, but their duration is limited by their

frequency distribution. A δ-function shaped light pulse would contain all frequencies and is

impossible to generate. The shorter the pulse is the bigger the bandwidth will be. If we want

to interact with specific states selectively the limit on the pulse duration is one optical cycle.

I.e. the pulse duration ∆t > 1/ω, where ω is the frequency of the exciting laser. In practice

we therefore have to average over all possible interaction times.

P (n)(t) =

∫ ∞

0
dtn

∫ ∞

0
dtn−1 · · ·

∫ ∞

0
dt1S

(n)(tn, tn−1, · · · , t1)

× E(t − tn)E(t − tn − tn−1) · · ·E(t − tn − tn−1 − · · · − t1). (2.22)

For calculations we will typically start by assuming δ-function shaped light pulses and later

consider the actual shape of the light pulses. We now need to consider the time ordering to

connect Eqs. 2.22 and 2.20.

For the nth-order the terms of Eq. (2.20) with m interactions on the bra side are the

complex conjugate of the terms with m interactions on the ket side and n−m interactions on

the bra side. When n is odd there are therefore (n+1)/2 terms and when n is even there are

(n+2)/2 terms. For these expressions there is no consideration of the time-ordering of the

interactions to the bra side with respect to the interactions on the ket. For practical purposes

such time ordering is useful to consider. It turns out that when there are m interactions on

the ket there are

(

n

m

)

different time-orderings possible. This gives a total of 2n−1 time-

ordered terms. Each of these terms with a particular number of interactions on the ket and a

particular time-ordering is connected with one so called Liouville space pathway. For each of

these one can draw a double sided Feynman diagram showing the interactions and the time

ordering.

Feynman diagram rules:

1. Vertical lines represent the time-evolution of the ket (drawn on the left) and the bra

(drawn on the right). Time is running from the bottom to the top.

2. Interactions with the external electric field are represented by arrows. The last interac-

tion, which is connected with the induced polarization emitting the signal, is indicated

with a different arrow and is drawn on the left side of the diagram.

9



2 Time-dependent perturbation theory

3. Each diagram has a sign (-1)m, where m is the number of interactions from the bra.

This is because the bra wavefunction contributes with a factor
(

i
~

)n−m
and the ket

wavefunction contributes with a factor
(

− i
~

)m
.

4. An arrow pointing to the right represents an electric field with e−iωt+ikr, while an

arrow pointing to the left to the left represents an electric field with eiωt−ikr. The real

external electric field E(t) = 2E0(t) cos(ωt − kr) can be separated into positive and

negative frequency fields E(t) = E0(t)(e
−iωt+ikr + eiωt−ikr), where E0(t) is the pulse

envelope. The frequency and wavevector of the emitted light is given by the sum of the

input frequencies and wavevectors.

5. An arrow pointing towards the system represents a change to a higher-excited state

and an arrow pointing away represents a change to a lower-excited state. This rule

comes from the rotating wave approximation requiring that the interactions should be

resonant (see below). The last interaction is connected with emission of the signal and

always point away from the system.

6. Before the first interaction the wavefunction connected with each line should be that of

the initial (ground) state and after the last interaction the two wavefunctions should be

identical.

Time

1

t2

t3

R1 R2 R3 R4

t

Figure 2.1: Four of the eight doublesided Feynman diagrams connected with the third-order

response functions. The other four are the complex conjugate of these four.

Writing the response function corresponding to a particular diagram is now trivial. The

sign is (-1)m, when m is the number of interactions on the right. Writing from right to left

one start at time 0 with |φ(0)〉 and follow the left side forward in time. For each interaction

one write a dipole operator µ and for each interval between the interactions one write a time-

evolution operator U(t + t1, t). After the last interaction one goes back in time along the

right side following the same rules and remembering that the time now progress backwards.

10



2.4 Feynman diagram selection

Finally, one ends with the ground state wavefunction again 〈φ(0)|. In practice the sign is

frequently reversed. This is a matter of convention and only depends on wether one want to

consider the absorption or transmission. Here the absorption convention will be used.

Experimentally it is possible not only to separate response at different order of interaction,

but by controlling the laser central frequencies, the direction of the laser beams and the order

of the laser pulses one can select subsets of the Feynman diagrams.

2.4 Feynman diagram selection

In a multi pulse experiments with n different incoming laser beams the electric field is

E(t) =

n
∑

j=1

Ej(t)(e
−iωj t+ikjr + eiωjt−ikjr). (2.23)

The envelope functions Ej contain the information about the amplitude of pulse j is at

different times. In the impulsive limit this function is approximated by a delta function.

This approximation, which is extremely useful for practical calculations, can only be done

when one at the same time consider the consequences for the phase matching and energy

conservation.

When the wavevectors of the applied laser beams are slightly different signal originating

from different Feynman diagrams will be emitted in different directions.

ks =

n
∑

j=1

±kj . (2.24)

The sign depends on which part of the electric field is interacting. One can therefore select

the signal that originates from interacting exactly once with each laser field by detecting the

signal in the proper direction. Other signals with multiple interactions with one beam will be

generated in experiments, but one can chose not to measure this signal. In this way one can

control exactly which beam is interacting with the sample at what time.

The central frequency of the emitted field will likewise be given by

ωs =

n
∑

j=1

±ωj. (2.25)

The sign for each frequency is the same as for the wavevector. In order to use the impulsive

limit we need to disregard the Feynman diagrams that are off-resonant. Lets consider the

linear response of a two-level system as a simple example. The response function for such

system is

S(1)(t1) = −
i

~
µ2e−

i
~

ǫt1e−Γt1 + c.c. (2.26)

11



2 Time-dependent perturbation theory

Here µ is the transition dipole, ǫ the energy difference between the two levels and Γ is the

lifetime of the excited state. The resulting polarization is

P (1)(t) =

∫ ∞

0
dt1E(t − t1)S

(1)(t1). (2.27)

We assume that the field is

E(t) = E0(t)(e
−iω1t+ik1r + eiω1t−ik1r). (2.28)

Filling in the electric field gives two terms

P (1)(t) = −
i

~
µ2

∫ ∞

0
dt1e

− i
~
ǫt1e−Γt1e−iω1(t−t1)+ik1rE0(t − t1) + c.c. (2.29)

−
i

~
µ2

∫ ∞

0
dt1e

− i
~
ǫt1e−Γt1eiω1(t−t1)−ik1rE0(t − t1) + c.c. (2.30)

We collect the terms oscillating in the time t1 and find

P (1)(t) = −
i

~
µ2e−iω1t+ik1r

∫ ∞

0
dt1e

−i( ǫ
~
−ω1)t1e−Γt1E0(t − t1) + c.c. (2.31)

−
i

~
µ2eiω1t−ik1r

∫ ∞

0
dt1e

−i( ǫ
~
+ω1)t1e−Γt1E0(t − t1) + c.c. (2.32)

When the laser frequency is close to resonance with the two-level system, i.e. ω1 ≈ ǫ
~

the inte-

grand of the first term is slowly oscillating, while the integrand of the second term is rapidly

oscillating. For finite pulse durations the second term will therefore be very small and should

be disregarded, when one uses the impulsive limit which would wrongfully give a contribution

from this term otherwise. Neglecting such off-resonant terms is denoted the rotating wave

approximation (RWA). The two contributions from this example are also illustrated in Figure

2.2. The physical interpretation is that in the first diagram the left side is brought from the

ground state to the excited state. In the second diagram the interaction should de-excite the

system, but this is in the ground state and cannot be lowered. Therefore this diagram should

be disregarded.

One should be aware that when the applied laser fields are overlapping in time (i.e. the

actual duration of the pulses is longer than the delay between them) it is not possible to control

the time-ordering of the interactions experimentally and artifacts can arise from diagrams that

one would otherwise have disregarded. Such artifacts can only be accounted for by using the

actual pulse envelopes instead of the impulsive limit. This is, however, in practice done very

seldom because the pule envelopes varies in different experimental setups.
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2.4 Feynman diagram selection

Figure 2.2: The Feynman diagrams connected with the first-order response functions. In

the left diagram the first interacting field has the phase e−iω1(t−t1)+ik1r, while the phase in the

right diagram is eiω1(t−t1)−ik1r.
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2 Time-dependent perturbation theory
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Chapter 3

Multi-dimensional spectroscopies

In this Chapter we will discuss the theory behind the most common multi-dimensional spec-

troscopies. For completeness a few one-dimensional spectroscopies will be discussed first.

3.1 Linear absorption (IR/vis)

The Feynman diagram corresponding to linear absorption is given in Figure 3.1. The fields

may be infrared or visual allowing the probe of vibrational excitations or electronic excitations

respectively. In both cases the response function is

S(1)(t) = −
i

~
〈φ0(0)|µ(t)e−

i
~

Htµ(0)|φ0(0)〉e
−Γt (3.1)

The last term is an ad hoc lifetime of the excited state. The actual spectrum is given by

the imaginary part of the Fourier transform with respect to t. Assuming a number of eigen

states with frequencies ωi and transition-dipole µi the spectrum is then given by a sum of

Lorentzians

I(ω) =
∑

i

µ2
i

π

Γ

(ω − ωi)2 + Γ2
. (3.2)

3.2 Raman spectroscopy

In Raman spectroscopy the excitation is happening through the interaction with two off-

resonsonant fields (see Figure 3.1). The perturbation HP (t) is therefore determined by the

transition-polarizability, i.e. α : ~E(t) ~E(t). The response function is therefore simply

S(1)(t) = −
i

~
〈φ0(0)|α(t)e−

i
~

Htα(0)|φ0(0)〉e
−Γt. (3.3)

The spectrum for a collection of eigen states with frequencies ωi and transition-polarizabilities

αi is

I(ω) =
∑

i

α2
i

π

Γ

(ω − ωi)2 + Γ2
. (3.4)
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3 Multi-dimensional spectroscopies

SFGAbsorption Raman

Figure 3.1: The Feynman diagrams connected with linear absorption, Raman spectroscopy

and sum-frequency generation (SFG).

Since the transition-polarizabilities are tensors depending on the polarization of the laser

light one can probe different parts of this by varying the polarization of the light. In isotropic

media there are two linear independent signals that one can measure. A typical choice is

using the anisotropic and the isotropic polarization setup.

3.3 Sum-frequency generation

Sum-frequency generation (SFG) is like a hybrid between linear absorption and Raman com-

bining one resonant dipole interaction with an off-resonant Raman interaction (see Figure

3.1). The most obvious advantage of SFG is that it is a second-order spectroscopy involving

three external laser fields. It therefore vanishes in systems with inversion symmetry. It is

therefore especially useful in the study of surfaces. The response function is

S(1)(t) = −
i

~
〈φ0(0)|α(t)e−

i
~

Htµ(0)|φ0(0)〉e
−Γt. (3.5)

The spectrum for a collection of eigen states with frequencies ωi and transition-polarizabilities

αi is

I(ω) =
∑

i

αiµi

π

Γ

(ω − ωi)2 + Γ2
. (3.6)

The polarization of the light can be used to determine the angle between the surface and the

transition dipole.

3.4 Two-dimensional IR/vis spectroscopy

In two-dimensional infrared and visual spectroscopy three laser pulses are applied at different

time delays. Usually the second time delay is fixed. Usually two phase-matching conditions

are used and all laser frequencies are equal. The Feynman diagrams selected in this situation

16



3.4 Two-dimensional IR/vis spectroscopy

are given in Figure 3.2. The rephasing (also called photon echo) diagrams arise in the phase-

matching direction kI = −k1 + k2 + k3 and the nonrephasing diagrams arise in the phase-

matching direction kII = +k1−k2+k3. This corresponds to changing the time-ordering of the

first two-interactions. In typical experiments the signal from these two directions are added

up. A third phase-matching setup is kIII = +k1 + k2 − k3, but this is not very frequently

used. One interesting application is, however, the detection of electron correlations [25].
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Figure 3.2: The Feynman diagrams connected with two-dimensional infrared and visible

spectroscopy. The numbers indicate the excitation level of the wavefunctions during the dif-

ferent time-intervals.

For both phase matching conditions kI and kII there are three Feynman diagrams. In the

first denoted the ground state bleach (GB) the system is in the ground state (symbolized by

a 0 in Figure 3.2) during the second time delay. During the two other time-delays one side

is in the ground state and the other in a single excited state. This is also called a coherence

between these two states. The time dependence of of such a coherence is e−
i
~
(ǫB−ǫK)t where

ǫB and ǫK are the energies connected with the bra and ket wave functions. In the stimulated

emission (SE) and excited state absorption (EA) diagrams the system is in a singly excited
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3 Multi-dimensional spectroscopies

state during the second time delay both on the ket and the bra side. In the SE diagram the

system is in a coherence between the ground state and a singly excited state during the last

time delay, while for the EA diagram the system is in a coherence between a single excited

and a doubly excited state. According to the Feynman rules the sign of the EA diagram is

opposite to that of the GB and SE.

Just as for the linear response the signal is Fourier transformed to obtain a spectrum.

By Fourier transforming with respect to the first and third time delay one obtains a two

dimensional spectrum as illustrated in Figure 3.3 for two coupled three level systems. The

frequency connected with the first time delay is ω1 and the frequency connected with the

third time delay is ω3. The diagonal peaks (A) arise from the GB and SE diagrams when the

system is in the same coherence during the two time delays. The cross peaks (C) arise from

the same diagrams, when the system is in the coherence between one single excited state and

the ground state during the first time delay and in the coherence between the other single

excited state and the ground state during the third time delay. The peaks arising from the

EA diagram are typically found slightly below the GB and SE peaks. This is because in the

EA diagram the system is in a coherence between a double excited and a single excited state

during the last time delay. The energy of the double excited state at least in vibrational

systems is typically slightly lower than twice the energy of the single excited state. This

difference is denoted the anharmonicity. If the anharmonicity is zero the peaks from the EA

diagram will fall on top of the GB and SE diagrams and cancel perfectly with them leaving

no detectable signal.

The delay t2 is denoted the waiting time. This time can be varied and by studying the

changes of the spectrum as the waiting time is changed one can obtain dynamical information.

While two-dimensional IR/visual spectroscopy reveal coupling information that is not present

in the corresponding one-dimensional spectrum, the waiting time is the true advantage. The

waiting time can be used to study all kinds of dynamical processes as rotational motion,

chemical exchange, population transfer and spectral diffusion [1].

The cross peaks in the two-dimensional spectra reveal information on the coupling be-

tween different states. While the overtone peaks reveal information on the anharmonicity,

these peaks are often rather an annoyance than something providing useful information. The

relative orientation between transition dipoles can be obtained by choosing the polarization

of the laser pulses [26]. Most frequently two polarization configurations are used. In the first

naturally called the parallel polarization spectrum all laser field polarizations are parallel. In

the second the first two laser field polarizations are parallel and the last field is polarized

perpendicular to the two first and the observed signal has a polarization parallel with the last

laser field. This configuration is denoted the perpendicular polarization spectrum.
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3.5 Two-dimensional Raman spectroscopy
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Figure 3.3: A schematic representation of a two-dimensional spectrum for a two coupled

three level systems. A, B, C and D are diagonal peaks (from GB and SE), diagonal overtone

peaks (from EA), cross peaks (from GB and SE) and cross peak overtones (from EA). Fre-

quently the ω1 and ω3 axes are exchanged. The A and C peaks have the opposite sign of the

B and D peaks.

3.5 Two-dimensional Raman spectroscopy

In two-dimensional Raman spectroscopy five laser pulses are involved in three Raman in-

teractions. In Figure 3.4 the Feynman diagrams corresponding to the signals in the ks =

k1 − k2 + k3 − k4 + k5 phase matching directions are given. While great effort was put in the

detection and modeling of the two-dimensional Raman response it has only been detected for

very few systems. The signal is very weak and so called cascaded responses originating from

two connected third-order Raman processes at different positions in the sample are contam-

inating the signal [27–30]. Since these cascades involves two molecules at different locations

in the sample it scales differently with sample size than the two-dimensional Raman signal

that originates from one position. One can therefore in principle make the sample more dilute

or the sample cell thinner. This will also make the signal smaller, but maybe with future

technology these problems can be overcome.

3.6 Two-dimensional sum-frequency generation

The two-dimensional sum-frequency generation (2DSFG) is in many ways similar to the two-

dimensional IR/vis spectroscopy. The Feynman diagrams are given in Figure 3.5. Just as
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3 Multi-dimensional spectroscopies

Figure 3.4: The Feynman diagrams connected with two-dimensional Raman spectroscopy.

for normal SFG the major difference is the symmetry determined selection rules. 2DSFG is

therefore suitable for studying structure and dynamics of surfaces and interfaces [31]. So far

only very few applications of 2DSFG have been made, but in the future one can expect to

see many.
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Figure 3.5: The Feynman diagrams connected with two-dimensional sum-frequency genera-

tion spectroscopy.
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3.7 Three-dimensional IR/vis spectroscopy

3.7 Three-dimensional IR/vis spectroscopy

So far only very few experiments have been done for three-dimensional IR/vis spectroscopy

and it has only been realized for infrared laser fields [32]. This, more exotic spectroscopy,

is limited by relatively small signals and is complicated by the fact that triple-excited states

will contribute. For a simple anharmonic oscillator system using the phase matching ks =

k1 − k2 + k3 − k4 + k5 the five Feynman diagrams in Figure 3.6 will contribute. These are

all located at different positions in the three-dimensional spectrum is the anharmonicity is

nonzero. As for two-dimensional spectroscopy the signal will vanish for a harmonic oscillator

due to destructive interference of the peaks.

t
2

t4

Figure 3.6: The Feynman diagrams connected with three-dimensional infrared and visible

spectroscopy.

3.8 Exercises

1. Write down the expressions for the Feynman diagrams for the two-dimensional IR/vis

spectra.

2. Find the excitation level for the wavefunctions at different times in the Feynman dia-

grams for the three-dimensional spectra in Figure 3.6.
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Chapter 4

Practical simulation of

multi-dimensional spectra

In the previous Chapter the Feynman diagrams governing the different multi-dimensional

spectra were given and the explicit expressions for the linear response was given. It was

assumed that the Hamiltonian could be seen as constant during the experiments and the the

transition dipoles were constant as well. In reality the systems considered are not isolated,

but in contact with a bath that is not explicitly part of the Hamiltonian. The consequence is

that the Hamiltonian of the becomes time-dependent. Furthermore the transition dipoles can

change as well for example as the molecules rotate the transition dipoles will rotate along.

This situation, which seemingly is much more complicated than the actual problem that

was solved in Chapter 2, can be accounted for rather easily. In this Chapter the practical

simulation of multi-dimensional spectra in dynamic systems will be treated. The approach

discussed here is not the only available approach, however, in contrast to for example the

well known second-order cumulant approach [33] it does allow the treatment of very general

situations such as chemical exchange. More exact methods as the hierarchical equations of

motion (HEOM) [34, 35] are much more demanding computationally and have only been

applied to very small systems.

4.1 Frequency fluctuations

If the Hamiltonian is fluctuating the time-evolution operator used in the response functions

discussed in the previous chapters simply have to be exchanged with the formal solution of

the time-dependent Schrödinger equation

U(t + ∆t, t) = exp+

(

−
i

~

∫ ∆t

0
dτH(t + τ)

)

. (4.1)
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4 Practical simulation of multi-dimensional spectra

For the transition-dipoles the magnitude and orientation at the instant of the interaction

should be used. The fluctuations can be found by doing molecular dynamics simulations and

connecting the frequencies with the changes in the environment through ab initio calculations

or through Stark effect mappings that connect the local electric field on a vibration or molecule

with the frequency of the studied vibration or electronic excitation [36–40]. Alternatively

stochastic models can be constructed for model calculations.

4.2 The numerical integration of the Schrödinger equation

scheme

In the following a collection of three level systems will be considered. The approach can in

principle be generalized to systems with more levels, however, for treating two-dimensional

optical spectroscopy one cannot reach these levels. For three-dimensional spectroscopy four

levels are accessible. For electronic systems two levels will be sufficient. The scheme is denoted

the numerical integration of the Schrödinger equation (NISE) scheme [41]. We employ the

simplest possible exciton Hamiltonian for a collection of N floating oscillators of the form

H(t) =

N
∑

i=1

[

ǫi(t)b
†
ibi −

∆i(t)

2
b
†
ib

†
ibibi

]

+

N
∑

i,j

Jij(t)b
†
ibj +

N
∑

i=1

~µi(t) · ~E(t)
[

b
†
i + bi

]

. (4.2)

Here ǫi(t) and ∆i(t) are the fluctuating frequency and anharmonicity respectively, of mode i,

Jij(t) is the fluctuating coupling between two modes, and b
†
i and bi are the usual Bose creation

and annihilation operators. The modes interact with the applied electric field ~E(t) through

the transition dipoles ~µi(t), which might fluctuate in time as well. In the Hamiltonian (Eq.

(4.2)) states with a different number of excitations are only coupled when an external field is

present. When the external field is vanishing, it is therefore block diagonal and the different

blocks can be treated separately. We denote the block concerning the ground state Hgg, the

singly excited states Hee, and the doubly excited states Hff . We will consider interactions

with an external electric field tuned to be resonant with the change of one excitation quantum.

In this case we need the transition dipoles between the ground state and the singly excited

states µge and those between the singly and doubly excited states µef .

The time-dependent Schrödinger equation

∂

∂t
Φ(t) = −

i

~
H(t)Φ(t) (4.3)

is solved for each block independently. Here Φ(t) is the wave function at time t. The evolution

of all possible states can be tracked if the evolution is known in an arbitrary, but fixed and

complete basis. We will utilise the site basis, where the excitations are localised on the amide

I sites. If a system was in the site basis state φi = b
†
i | g〉 at time zero it will have evolved
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4.2 The numerical integration of the Schrödinger equation scheme

into Φi(t) at time t. This wavefunction can be written in terms of the original fixed site basis

functions φ for the considered excitation manifold.

Φi(t) =
∑

j

φjcji(t) (4.4)

For t=0 the expansion coefficients fullfil cji(0) = δji. Upon insertion of Eq. (4.4) in the

time-dependent Schrödinger equation, an equation for the expansion coefficients is obtained:

∂

∂t
cik(t) = −

i

~

∑

j

Hij(t)cjk(t) (4.5)

which can be written in matrix form

∂

∂t
c(t) = −

i

~
H(t)c(t). (4.6)

For numerical integration of this equation using small time increments, the Hamiltonian

can be treated as constant during each integration step. The integration over one such

timestep of duration ∆t yields

c ((n + 1)∆t) = exp

(

−
i

~
H(n∆t)∆t

)

c(n∆t) ≡ U((n + 1)∆t, n∆t)c(n∆t), (4.7)

with the integer n labeling the timestep. By combining all time evolution operators U((j +

1)∆t, j∆t) from the selected starting time to all other times we have

U(n∆t, 0) =

[

m=n
∏

m=1

U(m∆t, (m − 1)∆t)

]

. (4.8)

The product
∏

denotes the time-ordered operation from the left with increasing m. The

time-evolution matrices between two arbitrary points in time is found using their unitary

property U(t1, t0) = U(t1, 0)U
†(t0, 0). Adding gg, ee or ff to the matrices indicates which

block of the Hamiltonian is used. The approach described here and the Hamiltonian employed

allow for the description of population transfer within the exciton manifolds.

4.2.1 Population transfer

The population transfer between two states in the site basis is calculated using

Pba(t) = 〈| 〈φb|U(t, 0)|φa〉 |
2〉E , (4.9)

where a is the initial state and b is the final state. The ensemble average, 〈· · · 〉E is obtained

by summing over the contributions from different realizations of the fluctuations. One way

to do this is by using different configurations along a MD trajectory. At zero time delay the

population will be in the initial state, i.e., Pab(0) = δab and at infinite delay the population

will be equally distributed over all states, i.e. Pab(0) = 1/N . The latter is due to the classical

treatment of the bath, which is valid in the high temperature limit, when the energy difference

between the states is smaller than the thermal energy.
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4 Practical simulation of multi-dimensional spectra

4.2.2 Linear absorption

The linear absorption is given by the Fourier transform of the two-point correlation function

of the transition dipole

I(ω) = Im

∫ ∞

0
dt1

i

~
〈〈g|µge(τ2)U

ee(τ2, τ1)µ
eg(τ1)|g〉〉E exp(−iωt1)ΓLA(t1). (4.10)

Here τ2 and τ1 are the times, when the system interacts with the external field and t1 is the

time between these interactions (t1 = τ2 − τ1). The vibrational lifetime is accounted for by

the relaxation factor

ΓLA(t1) = exp(−t1/2T1), (4.11)

where T1 is the lifetime of the singly excited states.

4.2.3 2DIR

The 2DIR spectrum is given as the sum of the signal emitted in the directions with wave

vectors kI = −k1 + k2 + k3 and kII = k1 − k2 + k3, where k1, k2, and k3 are the wave vectors

of the incoming fields. kI is the photon-echo signal and kII is the non-rephasing signal. Each

of these signals contains three contributions from distinct Liouville space pathways: ground

state bleach (GB), stimulated emission (SE) and excited state absorption (EA) [18,42]. These

are given by

S
(I)
GB(t3, t2, t1) = −

(

i

~

)3

〈〈g|µge(τ1)U
ee(τ1, τ2)µ

eg(τ2)µ
ge(τ4)U

ee(τ4, τ3)µ
eg(τ3)|g〉〉E

× Γ(t3, t2, t1)

S
(I)
SE(t3, t2, t1) = −

(

i

~

)3

〈〈g|µge(τ1)U
ee(τ1, τ3)µ

eg(τ3)µ
ge(τ4)U

ee(τ4, τ2)µ
eg(τ2)|g〉〉E

× Γ(t3, t2, t1)

S
(I)
EA(t3, t2, t1) =

(

i

~

)3

〈〈g|µge(τ1)U
ee(τ1, τ4)µ

ef (τ4)U
ff (τ4, τ3)µ

fe(τ3)U
ee(τ3, τ2)µ

eg(τ2)|g〉〉E

× Γ(t3, t2, t1)

S
(II)
GB (t3, t2, t1) = −

(

i

~

)3

〈〈g|µge(τ4)U
ee(τ4, τ3)µ

eg(τ3)µ
ge(τ2)U

ee(τ2, τ1)µ
eg(τ1)|g〉〉E

× Γ(t3, t2, t1)

S
(II)
SE (t3, t2, t1) = −

(

i

~

)3

〈〈g|µge(τ2)U
ee(τ2, τ3)µ

eg(τ3)µ
ge(τ4)U

ee(τ4, τ1)µ
eg(τ1)|g〉〉E

× Γ(t3, t2, t1)

S
(II)
EA (t3, t2, t1) =

(

i

~

)3

〈〈g|µge(τ2)U
ee(τ2, τ4)µ

ef (τ4)U
ff (τ4, τ3)µ

fe(τ3)U
ee(τ3, τ1)µ

eg(τ1)|g〉〉E

× Γ(t3, t2, t1)

(4.12)
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4.3 Dephasing and lineshapes

The vibrational lifetime is included in an ad hoc way through the relaxation factor

Γ(t3, t2, t1) = exp(−(t3 + 2t2 + t1)/2T1). (4.13)

τ1 through τ4 are the times for interactions with the external electric field and t1 through t3

are the time delays between these (i.e. t1 = τ2 − τ1, t2 = τ3 − τ2, and t1 = τ4 − τ3). T1 and

T2 are the lifetimes of the singly and doubly excited states, respectively.

The signals are converted to the frequency domain using 2D Fourier transforms with

respect to the time differences t1 and t3:

S(I)(ω3, t2, ω1) =

∫ ∞

0

∫ ∞

0
(S

(I)
GB(t3, t2, t1) + S

(I)
SE(t3, t2, t1) + S

(I)
EA(t3, t2, t1))

× exp(i(ω3t3 − ω1t1))dt3dt1,

S(II)(ω3, t2, ω1) =

∫ ∞

0

∫ ∞

0
(S

(II)
GB (t3, t2, t1) + S

(II)
SE (t3, t2, t1) + S

(II)
EA (t3, t2, t1))

× exp(i(ω3t3 + ω1t1))dt3dt1.

(4.14)

t2 is the mixing time. Finally, the 2DIR correlation spectrum is the imaginary part of the

sum of the photon-echo and non-rephasing signals,

I2D(ω3, t2, ω1) = Im(S(I)(ω3, t2, ω1) + S(II)(ω3, t2, ω1)). (4.15)

The parallel and perpendicular polarization spectra are obtained using the proper orien-

tation averaging over polarization components of the transition dipole vectors as described

elsewhere [39,43].

In Figure 4.1 a flow diagram for the calculation of multi-dimensional spectra is given.

The information about the fluctuations in the Hamiltonian and transition-dipoles comes either

molecular dynamics simulations or some kind of stochastic model. The parameters connecting

the molecular dynamics structures with the actual Hamiltonian can be provided from ab initio

calculations or some kind of mapping based on such calculations. Finally, the NISE scheme

is applied to obtain the spectra.

4.3 Dephasing and lineshapes

The fluctuations affect the shape of the linear spectra. If there is a distribution of frequencies

present from different molecules the sum of the signal from all molecules will decay (see Figure

4.2). The time scale for this dephasing is determined by the width of the frequency distribu-

tion. For a Gaussian frequency distribution the signal will be given by an oscillation with the

central frequency with Gaussian decay. If the frequency of each molecule fluctuates on a time

scale faster than the dephasing time each molecule will on average evolve with a frequency

that is close to the central frequency and the molecules will all behave in a more similar way
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4 Practical simulation of multi-dimensional spectra
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Figure 4.1: A flow diagram for the practical calculation of spectra.

resulting in a slowdown of the dephasing. For a Gaussian distribution of frequencies this will

lead to an overall signal that oscillates with the central frequency and decay exponentially

(see Figure 4.2). These two limiting cases result in Gaussian and Lorentzian line shapes as

illustrated in Figure 4.3. The fact that frequency fluctuations make the individual molecules

behave more similar with a frequency that is closer to the central frequency leads to nar-

rower lines the faster these fluctuations are. This is also known as motional narrowing. The

fluctuations are often characterized by the frequency auto-correlation function.

For two-dimensional IR/vis spectroscopy the frequency fluctuations manifest themselves

in a different way. The line shapes are affected by motional narrowing just as for the linear

spectra. At the same time the frequency fluctuations can be studied by changing the waiting

time. If one excite a molecule during the first time delay and probe it during the third time

delay one will observe the signal of that molecule at a point in the spectrum connected with

the frequency it had during the first delay along the ω1 axis and the frequency it had during

the third time delay along the ω3 axis. If the frequency did not change during the waiting

time one will therefore observe a diagonally elongated line (see Figure 4.4). If on the other

hand the dynamics is very fast compared to the waiting time all molecules will have lost

their memory of their initial frequency after the waiting time and the peak will be round (see

28



4.3 Dephasing and lineshapes
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Figure 4.2: Left: The signal from three molecules emitted at different constant frequencies.

The total signal dephase rapidly. Right: The signal from three molecules emitted at initially

different but rapidly fluctuating frequencies. The total signal dephase slowly.
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Figure 4.3: The dotted line is a Gaussian lineshape. The dashed line is a Lorentzian line-

shape.

Figure 4.4). At intermediate times the loss of correlation can be followed by looking at the

broading of the peak in the antidiagonal direction or on the slope of the peak. Such studies

with varying waiting times are useful in the study of the time scales that the environment

around a molecule change, since the frequency fluctuations are induced by this environment.
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4 Practical simulation of multi-dimensional spectra

Figure 4.4: The shape of two-dimensional IR/vis spectra. Diagonal elongated lineshapes

indicate slow dynamics, while fast dynamics is connected with round lineshapes. As the waiting

time increases (from left to right) the frequency memory is lost and the lineshapes get more

round.

4.4 Reorientation

The rotational motion of molecules can be followed using the polarization of laser pulses.

When the waiting time is zero the strongest signal will come when all pulses have parallel

polarization. If the transition dipole was aligned with the polarization for the first laser

pulse it will also be aligned with the polarization for the last laser pulse and therefore the

maximal signal is obtained. If the waiting time is increased the molecule and therefore the

transition dipole might rotate. The transition dipole is therefore not anymore aligned with

the last laser pulse and the signal will decrease (see Figure 4.5). On the other hand, if one

uses the perpendicular polarization setup, where polarization of the laser after the waiting

time is perpendicular to the laser polarization before, a molecule that was aligned with the

laser polarization before the waiting time will need to rotate to be aligned with the laser

polarization after the waiting time. Therefore the intensity in the perpendicular polarization

setup increase with the rotation of the molecules. Often the isotropic signal is defined as the

sum SISO = S||+2S⊥, where S|| is the parallel polarization signal and S⊥ is the perpendicular

polarization signal. This is sometimes also denoted the magic angle signal, because it can

be obtained by rotating the laser polarization after the waiting time by the magic angle

54.7◦ with respect to that before the waiting time. The isotropic signal is independent of

the transition-dipole rotation. The transition-dipole rotation is usually characterized by the

anisotropy

SANI =
S|| − S⊥

S|| + 2S⊥
. (4.16)

The anisotropy assuming a fixed transition dipole ~µ rotating is equal to the rotational corre-

lation function for the unit vector µ̂ along the transition dipole

C(t) =
1

5
〈3|µ̂(t) · µ̂(0)|2 − 1〉E . (4.17)

The anisotropy is 0.4, when no rotation has taken place and goes to 0, when an isotropic

distribution in three dimensions has been reached. If the rotation is restricted to a plane the

30



4.5 Population transfer

anisotropy will be 0.1, when an isotropic distribution has been obtained within that plane.
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Figure 4.5: The intensity of two-dimensional IR/vis spectra with different polarization. The

grayscale indicates the relative intensity to the initial intensity of the parallel polarization

spectrum. The top spectra are parallel polarization and the bottom spectra are perpendicular

polarization. The waiting time increases from left to right.

4.5 Population transfer

When the Hamiltonian is fluctuating the normal eigen state picture breaks down. The eigen

states at one time are different from the eigen states at another time. Therefore there is a

constant mixing of states as the time progresses and if we excited one state the excitation

might end up in another state at a later time. This transfer of population leads to effects that

are similar to those observed due to dephasing and rotation. When population transfer from

one state to another the frequency of that other state can also be different as can the transition

dipole. One should therefore be cautious with the interpretation of spectra involving molecules

with multiple states that can interact during the waiting time. The population transfer within

the single and double excitation manifolds is accounted for with the NISE approach outlined

here. One should of course be aware that eventually the population of an excited state

will return to the ground state and complex decay through intermediate states is observed

experimentally as well. This is only accounted for by the ad hoc decay rate of the overall

signal. More sophisticated methods still needs to be developed to account properly for those

effects.
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